Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Developing a More Comprehensive Decision-Making Architecture for Empirical Social Research: Agent-Based Simulation of Mobility Demands in Switzerland

  • Conference paper
  • First Online:
Multi-Agent-Based Simulation XX (MABS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12025))

Abstract

Agent-based simulation is an alternative approach to traditional analytical methods for understanding and capturing different types of complex, dynamic interactive processes. However, the application of these models is currently not common in the field of socio-economical science and many researchers still consider them as intransparent, unreliable and unsuitable for prediction. One of the main reasons is that these models are often built on architectures derived from computational concepts, and hence do not speak to the selected domain’s ontologies. Using Triandis’ Theory of Interpersonal Behaviour, we are developing a new agent architecture for the choice model simulation that is capable of combining a diverse number of determinants in human decision-making and being enhanced by empirical data. It also aims to promote communication between technical scientists and other disciplines in a collaborative environment. This paper illustrates an overview of this architecture and its implementation in creating an agent population for the simulation of mobility demands in Switzerland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ajzen, I.: The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 50(2), 179–211 (1991)

    Article  Google Scholar 

  2. Ampt, E., et al.: Understanding voluntary travel behaviour change. Transp. Eng. Aust. 9(2), 53 (2004)

    Google Scholar 

  3. Balke, T., Gilbert, N.: How do agents make decisions? A survey. J. Artif. Soc. Soc. Simul. 17(4), 13 (2014)

    Article  Google Scholar 

  4. BedDeM source code. https://github.com/SiLab-group/beddem_simulator. Accessed 12 Sept 2019

  5. Bowles, S., Gintis, H.: Social preferences, homo economicus, and zoon politikon. In: The Oxford handbook of contextual political analysis, pp. 172–186. Oxford University Press, Oxford (2006)

    Google Scholar 

  6. Conte, R., Paolucci, M., et al.: Intelligent social learning. J. Artif. Soc. Soc. Simul. 4(1), U61–U82 (2001)

    Google Scholar 

  7. Deffuant, G., Moss, S., Jager, W.: Dialogues concerning a (possibly) new science. J. Artif. Soc. Soc. Simul. 9(1), 1 (2006). http://jasss.soc.surrey.ac.uk/9/1/1.html

  8. Edmonds, B.: Simulation and complexity how they can relate. In; Virtual Worlds of Precision: Computer-Based Simulations in the Sciences and Social Sciences, pp. 5–32. Lit-Verlag, Münster (2005)

    Google Scholar 

  9. Fishbein, M., Ajzen, I., et al.: Intention and Behavior: An Introduction to Theory and Research. Addison-Wesley, Reading (1975)

    Google Scholar 

  10. Gilbert, N.: When does social simulation need cognitive models. Cognition and multi-agent interaction: From cognitive modeling to social simulation, pp. 428–432 (2006)

    Google Scholar 

  11. Gintis, H., et al.: Zoon Politikon: the evolutionary origins of human political systems. Curr. Anthropol. 56(3), 340–341 (2015)

    Article  Google Scholar 

  12. Gower, J.C.: A general coefficient of similarity and some of its properties. Biometrics 27, 857–871 (1971)

    Article  Google Scholar 

  13. Heckbert, S., Baynes, T., Reeson, A.: Agent-based modeling in ecological economics. Ann. N. Y. Acad. Sci. 1185(1), 39–53 (2010)

    Article  Google Scholar 

  14. Hedstrom, P.: Dissecting the Social: On the Principles of Analytical Sociology. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  15. Helbing, D.: Systemic risks in society and economics. In: Helbing, D. (eds.) Social Self-Organization. Understanding Complex Systems, pp. 261–284. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24004-1_14

  16. Hörl, S., Balac, M., Axhausen, K.W.: A first look at bridging discrete choice modeling and agent-based microsimulation in MATSim. Procedia Comput. Sci. 130, 900–907 (2018)

    Article  Google Scholar 

  17. Keane, M.: Current issues in discrete choice modeling. Market. Lett. 8(3), 307–322 (1997). https://doi.org/10.1023/A:1007912614003

  18. Lady, B.B.F.: From pride and prejudice to persuasion satisficing in mate search. In: Simple Heuristics that make US Smart, p. 287 (1999)

    Google Scholar 

  19. Laird, J.E.: The Soar Cognitive Architecture. MIT Press, Cambridge (2012)

    Book  Google Scholar 

  20. Mobility and Transport Microcensus. https://www.are.admin.ch/are/en/home/tr-ansport-and-infrastructure/data/mtmc.html. Accessed 16 Jan 2019

  21. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529 (2015)

    Article  Google Scholar 

  22. Quiggin, J.: Generalized Expected Utility Theory: The Rank-dependent Model. Springer, Dordrecht (2012)

    MATH  Google Scholar 

  23. Rao, A.S., George, M.P.: Modeling rational agents within a BDI-architecture. In: Allen, J., Fikes, R., Sandewall, E., Sandewall, E. (eds.) Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning, KR91. Morgan Kauffman, San Matteo, CA (1991)

    Google Scholar 

  24. The Repast Suite. https://repast.github.io. Accessed 24 Jan 2019

  25. R project. https://www.r-project.org/about.html. Accessed 12 Sept 2019

  26. Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 21(3), 660–674 (1991)

    Article  MathSciNet  Google Scholar 

  27. Sawyer, R.K.: Artificial societies: multiagent systems and the micro-macro link in sociological theory. Sociol. Methods Res. 31(3), 325–363 (2003)

    Article  MathSciNet  Google Scholar 

  28. The SCCER-CEST Website. https://www.sccer-crest.ch/research-database/. Accessed 24 Jan 2019

  29. Schill, K., Zetzsche, C., Hois, J.: A belief-based architecture for scene analysis: from sensorimotor features to knowledge and ontology. Fuzzy Sets Syst. 160(10), 1507–1516 (2009)

    Article  MathSciNet  Google Scholar 

  30. Swiss Household Energy Demand Survey (SHEDS). https://www.sccer-crest.ch/research/swiss-household-energy-demand-survey-sheds/. Accessed 16 Jan 2019

  31. Simon, H.A.: Bounded rationality. In: Eatwell J., Milgate M., Newman P. (eds.) Utility and Probability. The New Palgrave. Palgrave Macmillan, London, pp. 15–18. Springer (1990). https://doi.org/10.1007/978-1-349-20568-4_5

  32. Sun, R.: The clarion cognitive architecture: extending cognitive modeling to social simulation. In: Cognition and Multi-agent Interaction, pp. 79–99 (2006)

    Google Scholar 

  33. Sun, R.: Cognition and multi-agent interaction: from cognitive modeling to social simulation. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  34. Sun, R.: The Cambridge Handbook of Computational Psychology. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  35. Sun, R., Naveh, I.: Simulating organizational decision-making using a cognitively realistic agent model. J. Artif. Soci. Soc. Simul. 7(3) (2004). http://jasss.soc.surrey.ac.uk/7/3/5.html

  36. Taatgen, N.A., Lebiere, C., Anderson, J.R.: Modeling paradigms in ACT-R. In: Cognition and Multi-agent Interaction: From Cognitive Modeling To Social Simulation, pp. 29–52 (2006)

    Google Scholar 

  37. Todd, P.M., Billari, F.C., Simao, J.: Aggregate age-at-marriage patterns from individual mate-search heuristics. Demography 42(3), 559–574 (2005). https://doi.org/10.1353/dem.2005.0027

  38. Triandis, H.C.: Interpersonal Behavior. Brooks/Cole Pub, Co, California (1977)

    Google Scholar 

Download references

Acknowledgement

This project is part of the activities of SCCER CREST, which is financially supported by the Swiss Commission for Technology and Innovation (Innosuisse). The current version also utilises data from the Mobility and Transport Microcensus - 2015 edition, which provided by the Federal Office for Spatial Development (ARE) in October 2017.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khoa Nguyen or René Schumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, K., Schumann, R. (2020). On Developing a More Comprehensive Decision-Making Architecture for Empirical Social Research: Agent-Based Simulation of Mobility Demands in Switzerland. In: Paolucci, M., Sichman, J.S., Verhagen, H. (eds) Multi-Agent-Based Simulation XX. MABS 2019. Lecture Notes in Computer Science(), vol 12025. Springer, Cham. https://doi.org/10.1007/978-3-030-60843-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60843-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60842-2

  • Online ISBN: 978-3-030-60843-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics