Nothing Special   »   [go: up one dir, main page]

Skip to main content

Prediction of Drug-Target Interactions with CNNs and Random Forest

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12464))

Included in the following conference series:

Abstract

Drug molecules interact with target proteins to influence the pharmacological action of the target to achieve the phenotypic effect, which can facilitate the identification of novel targets for current drug. Traditional biological experiments for discovering new drug-target interactions are expensive and time-consuming. Therefore, it is crucial to develop new prediction methods for identifying potential drug-target interactions. Computing methods have been increasing developed which can quickly and effectively predict drug-target interactions. In particular, machine learning methods have been widely used due to high predictive performance and computational efficiency. This paper first uses MACCS substructure fingerings to encode the drug molecules, then uses CNNs to extract the biological evolutionary information of target protein sequences, and finally uses random forest algorithm to predict drug-target interactions. Four datasets of drug-target interactions including Enzymes, Ion Channels, GPCRs and Nuclear Receptors, are independently used for building models with random forest. The results demonstrate our proposed method has a general compatibility, which is effective and feasible to predict drug-target interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kim, I.W., Jang, H., Hyunkim, J., et al.: Computational drug repositioning for gastric cancer using reversal gene expression profiles. Sci. Rep. 9, 2660 (2019)

    Article  Google Scholar 

  2. Ganotra, G.K., Wade, R.C.: Prediction of drug-target binding kinetics by comparative binding energy analysis. ACS Med. Chem. Lett. 9(11), 1134–1139 (2018)

    Article  Google Scholar 

  3. Kingsmore, K.M., Grammer, A.C., Lipsky, P.E.: Drug repurposing to improve treatment of rheumatic autoimmune inflammatory diseases. Nat. Rev. Rheumatol. 16, 32–52 (2020)

    Article  Google Scholar 

  4. Williams, G., Gatt, A., Clarke, E., et al.: Drug repurposing for Alzheimer’s disease based on transcriptional profiling of human iPSC-derived cortical neurons. Transl. Psychiatry 9, 220 (2019)

    Article  Google Scholar 

  5. Stokes, J.M., Yang, K., Swanson, K., et al.: A deep learning approach to antibiotic discovery. Cell 180(4), 668–702 (2020)

    Article  Google Scholar 

  6. Zhang, W., Lin, W., Zhang, D., Wang, S., Shi, J., Niu, Y.: Recent advances in the machine learning-based drug-target interaction prediction. Curr. Drug Metab. 20(3), 194–202 (2019)

    Article  Google Scholar 

  7. Peng, L., Liao, B., Zhu, W., Li, Z., Li, K.: Predicting drug-target interactions with multi-information fusion. IEEE J Biomed. Health Inf. 21(2), 56–72 (2017)

    Google Scholar 

  8. Zong, N., Kim, H., Ngo, V., Harismendy, O.: Deep mining heterogeneous networks of biomedical linked data to predict novel drug-target associations. Bioinformatics 33(15), 2337–2344 (2017)

    Article  Google Scholar 

  9. Wen, M., et al.: Deep-learning-based drug-target interaction prediction. J. Proteome 16(4), 1401–1409 (2017)

    Article  Google Scholar 

  10. Pliakos, K., Vens, C., Tsoumakas, G.: Predicting drug-target interactions with multi-label classification and label partitioning. IEEE/ACM Trans. Comput. Biol. Bioinf. (2019, early access). https://doi.org/10.1109/TCBB.2019.2951378. https://ieeexplore.ieee.org/document/8890853

  11. Pliakos, K.: Mining biomedical networks exploiting structure and background information. KU Leuven, Belgium (2019)

    Google Scholar 

  12. Zhang, W., Chen, Y., Li, D.: Drug-target interaction prediction through label propagation with linear neighborhood information. Molecules 22(12), 2056 (2017)

    Article  Google Scholar 

  13. Ezzat, A., Zhao, P., Wu, M., Li, X., Kwoh, C.: Drug-target interaction prediction with graph regularized matrix factorization. IEEE/ACM Trans. Comput. Biol. Bioinf. 14(3), 646–656 (2017)

    Article  Google Scholar 

  14. Olayan, R.S., Ashoor, H., Bajic, V.B.: DDR: efficient computational method to predict drug-target interactions using graph mining and machine learning approaches. Bioinformatics 34(7), 1164–1173 (2017)

    Article  Google Scholar 

  15. Li, Z., et al.: Identification of drug-target interaction from interactome network with ‘guilt-by-association’ principle and topology features. Bioinformatics 32(7), 1057–1064 (2016)

    Article  Google Scholar 

  16. Rayhan, F., Ahmed, S., Shatabda, S., et al.: iDTI-ESBoost: identification of drug target interaction using evolutionary and structural features with boosting. Sci. Rep. 7(1), 17731 (2017)

    Article  Google Scholar 

  17. Mousavian, Z., Khakabimamaghani, S., Kavousi, K., et al.: Drug-target interaction prediction from PSSM based evolutionary information. J. Pharmacol. Toxicol. Methods 78, 42–51 (2016)

    Article  Google Scholar 

  18. Öztürk, H., Özgür, A., Ozkirimli, E.: DeepDTA: deep drug-target binding affinity prediction. Bioinformatics 34(17), i821–i829 (2018)

    Article  Google Scholar 

  19. Davis, M.I., Hunt, J.P., Herrgard, S., et al.: Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol. 29(11), 1046–1051 (2011)

    Article  Google Scholar 

  20. He, T., Heidemeyer, M., Ban, F., et al.: SimBoost: a read-across approach for predicting drug-target binding affinities using gradient boosting machines. J. Cheminf. 9(1), 24 (2017)

    Article  Google Scholar 

  21. Tang, J., Szwajda, A., Shakyawar, S., et al.: Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis. J. Chem. Inf. Model. 54(3), 735–743 (2014)

    Article  Google Scholar 

  22. Yamanishi, Y., Araki, M., Gutteridge, A., et al.: Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Intell. Syst. Mol. Biol. 24(13), 232–240 (2008)

    Google Scholar 

  23. Yamanishi, Y., Masaaki, K., Minoru, K., et al.: Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 26(12), 246–254 (2010)

    Article  Google Scholar 

  24. Cao, D., Liu, S., Xu, Q., et al.: Large-scale prediction of drug-target interactions using protein sequences and drug topological structures. Anal. Chim. Acta 752, 1–10 (2012)

    Article  Google Scholar 

  25. Gunther, S., Kuhn, M., Dunkel, M., et al.: SuperTarget and matador: resources for exploring drug-target relationships. Nucleic Acids Res. 36, 919–922 (2007)

    Article  Google Scholar 

  26. Kanehisa, M., Goto, S., Hattori, M., et al.: From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34(90001), 354–357 (2006)

    Article  Google Scholar 

  27. Wishart, D.S., Knox, C., Guo, A.C., et al.: Drugbank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36(suppl 1), D901–D906 (2008)

    Article  Google Scholar 

  28. Jeske, L., Placzek, S., Schomburg, I., et al.: BRENDA in 2019: a European ELIXIR core data resource. Nucleic Acids Res. 47, 542–549 (2019)

    Article  Google Scholar 

  29. Cheng, F., Liu, C., Jiang, J., et al.: Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput. Biol. 8(5), e1002503 (2012)

    Article  Google Scholar 

  30. Chen, H., Zhang, Z.: A semi-supervised method for drug-target interaction prediction with consistency in networks. PLoS ONE 8(5), e62975 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank the members of Machine Learning and Artificial Intelligence Laboratory, School of Computer Science and Technology, Wuhan University of Science and Technology, for their helpful discussion within seminars. This work was supported in part by Hubei Province Natural Science Foundation of China (No. 2018CFB526, 2019CFB797), by National Natural Science Foundation of China (No. 61502356, 61972299, 61702385).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, X., Xu, M., Yu, H. (2020). Prediction of Drug-Target Interactions with CNNs and Random Forest. In: Huang, DS., Jo, KH. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12464. Springer, Cham. https://doi.org/10.1007/978-3-030-60802-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60802-6_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60801-9

  • Online ISBN: 978-3-030-60802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics