Nothing Special   »   [go: up one dir, main page]

Skip to main content

Predicting Human Disease-Associated piRNAs Based on Multi-source Information and Random Forest

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12464))

Included in the following conference series:

  • 1033 Accesses

Abstract

Whole genome analysis studies have shown that Piwi-interacting RNA (piRNA) play a crucial role in disease progression, diagnosis, and therapeutic target. However, traditional biological experiments are expensive and time-consuming. Thus, computational models could serve as a complementary means to provide potential disease-related piRNA candidates. In this study, we propose a novel computational model called APDA to identify piRNA-disease associations. The proposed method integrates disease semantic similarity and piRNA sequence information to construct feature vectors, and maps them to the optimal feature subspace through the stacked autoencoder to obtain the final feature vector. Finally, random forest classifier is used to infer disease-related piRNA. In five-fold cross-validation, the APDA achieved an average AUC of 0.9088 and standard deviation of 0.0126, which is significantly better than the compared method. Therefore, the proposed APDA method is a powerful and necessary tool for predicting human disease-associated piRNAs and provide new impetus to reveal the underlying causes of human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yin, H., Lin, H.: An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature 450, 304 (2007)

    Article  Google Scholar 

  2. Siomi, M.C., Sato, K., Pezic, D., Aravin, A.A.: PIWI-interacting small RNAs: the vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 12, 246 (2011)

    Article  Google Scholar 

  3. Iwasaki, Y.W., Siomi, M.C., Siomi, H.: PIWI-interacting RNA: its biogenesis and functions. Ann. Rev. Biochem. 84, 405–433 (2015)

    Article  Google Scholar 

  4. Grimson, A., et al.: Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455, 1193 (2008)

    Article  Google Scholar 

  5. Aravin, A.A., Hannon, G.J., Brennecke, J.: The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318, 761–764 (2007)

    Article  Google Scholar 

  6. Malone, C.D., et al.: Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137, 522–535 (2009)

    Article  Google Scholar 

  7. Leslie, M.: The immune system’s compact genomic counterpart. American Association for the Advancement of Science (2013)

    Google Scholar 

  8. Pall, G.S., Codony-Servat, C., Byrne, J., Ritchie, L., Hamilton, A.: Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot. Nucleic Acids Res. 35, e60 (2007)

    Article  Google Scholar 

  9. Marcon, E., Babak, T., Chua, G., Hughes, T., Moens, P.: miRNA and piRNA localization in the male mammalian meiotic nucleus. Chromosome Res. 16, 243–260 (2008)

    Article  Google Scholar 

  10. Armisen, J., Gilchrist, M.J., Wilczynska, A., Standart, N., Miska, E.A.: Abundant and dynamically expressed miRNAs, piRNAs, and other small RNAs in the vertebrate Xenopus tropicalis. Genome Res. 19, 1766–1775 (2009)

    Article  Google Scholar 

  11. Moyano, M., Stefani, G.: piRNA involvement in genome stability and human cancer. J. Hematol. Oncol. 8, 38 (2015)

    Article  Google Scholar 

  12. Muhammad, A., Waheed, R., Khan, N.A., Jiang, H., Song, X.: piRDisease v1. 0: a manually curated database for piRNA associated diseases. Database 2019 (2019)

    Google Scholar 

  13. Rajasethupathy, P., et al.: A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 149, 693–707 (2012)

    Article  Google Scholar 

  14. Houwing, S., et al.: A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129, 69–82 (2007)

    Article  Google Scholar 

  15. Gou, L.-T., et al.: Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res. 24, 680 (2014)

    Article  Google Scholar 

  16. Zou, A.E., et al.: The non-coding landscape of head and neck squamous cell carcinoma. Oncotarget 7, 51211 (2016)

    Article  Google Scholar 

  17. Chu, H., et al.: Identification of novel piRNAs in bladder cancer. Cancer Lett. 356, 561–567 (2015)

    Article  Google Scholar 

  18. Cheng, J., et al.: piRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells. Clinica Chimica Acta 412, 1621–1625 (2011)

    Article  Google Scholar 

  19. Assumpcao, C.B., et al.: The role of piRNA and its potential clinical implications in cancer. Epigenomics 7, 975–984 (2015)

    Article  Google Scholar 

  20. Li, Y., et al.: Piwi-interacting RNAs (piRNAs) are dysregulated in renal cell carcinoma and associated with tumor metastasis and cancer-specific survival. Mol. Med. 21, 381–388 (2015)

    Article  Google Scholar 

  21. Romano, G., Veneziano, D., Acunzo, M., Croce, C.M.: Small non-coding RNA and cancer. Carcinogenesis 38, 485–491 (2017)

    Article  Google Scholar 

  22. Simon, B., et al.: Recognition of 2′-O-methylated 3′-end of piRNA by the PAZ domain of a Piwi protein. Structure 19, 172–180 (2011)

    Article  Google Scholar 

  23. Rouget, C., et al.: Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature 467, 1128 (2010)

    Article  Google Scholar 

  24. Ghildiyal, M., et al.: Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320, 1077–1081 (2008)

    Article  Google Scholar 

  25. Vourekas, A., Alexiou, P., Vrettos, N., Maragkakis, M., Mourelatos, Z.: Sequence-dependent but not sequence-specific piRNA adhesion traps mRNAs to the germ plasm. Nature 531, 390 (2016)

    Article  Google Scholar 

  26. Yin, J., et al.: piR-823 contributes to colorectal tumorigenesis by enhancing the transcriptional activity of HSF 1. Cancer Sci. 108, 1746–1756 (2017)

    Article  Google Scholar 

  27. Zhang, H., Ren, Y., Xu, H., Pang, D., Duan, C., Liu, C.: The expression of stem cell protein Piwil2 and piR-932 in breast cancer. Surg. Oncol. 22, 217–223 (2013)

    Article  Google Scholar 

  28. Lee, J.H., et al.: Stem-cell protein Piwil2 is widely expressed in tumors and inhibits apoptosis through activation of Stat3/Bcl-XL pathway. Hum. Mol. Genetics 15, 201–211 (2005)

    Article  Google Scholar 

  29. Yan, H., et al.: piRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma. Leukemia 29, 196 (2015)

    Article  Google Scholar 

  30. Sai Lakshmi, S., Agrawal, S.: piRNABank: a web resource on classified and clustered Piwi-interacting RNAs. Nucleic Acids Res. 36, D173–D177 (2007)

    Article  Google Scholar 

  31. Wang, J., et al.: piRBase: a comprehensive database of piRNA sequences. Nucleic Acids Res. 47, D175–D180 (2018)

    Article  Google Scholar 

  32. Sarkar, A., Maji, R.K., Saha, S., Ghosh, Z.: piRNAQuest: searching the piRNAome for silencers. BMC Genomics 15, 555 (2014)

    Article  Google Scholar 

  33. Kirk, J.M., et al.: Functional classification of long non-coding RNAs by k-mer content. Nat. Genetics 50, 1474 (2018)

    Article  Google Scholar 

  34. Wong, L., Huang, Y.A., You, Z.H., Chen, Z.H., Cao, M.Y.: LNRLMI: linear neighbour representation for predicting lncRNA-miRNA interactions. J. Cell. Mol. Med. 24(1), 79–87 (2019)

    Article  Google Scholar 

  35. Xiang, Z., Qin, T., Qin, Z.S., He, Y.: A genome-wide MeSH-based literature mining system predicts implicit gene-to-gene relationships and networks. BMC Syst. Biol. 7, S9 (2013)

    Article  Google Scholar 

  36. Lipscomb, C.E.: Medical subject headings (MeSH). Bull. Med. Libr. Assoc. 88, 265 (2000)

    Google Scholar 

  37. Ji, B.-Y., You, Z.-H., Cheng, L., Zhou, J.-R., Alghazzawi, D., Li, L.-P.: Predicting miRNA-disease association from heterogeneous information network with GraRep embedding model. Sci. Rep. 10, 1–12 (2020)

    Article  Google Scholar 

  38. Zheng, K., You, Z.-H., Wong, L., Chen, Z.-H., Jiang, H.-J.: Inferring Disease-Associated Piwi-Interacting RNAs via Graph Attention Networks. bioRxiv (2020)

    Google Scholar 

  39. Chen, X., et al.: WBSMDA: within and between score for MiRNA-disease association prediction. Sci. Rep. 6, 21106 (2016)

    Article  Google Scholar 

  40. Chen, Z.-H., Li, L.-P., He, Z., Zhou, J.-R., Li, Y., Wong, L.: An improved deep forest model for predicting self-interacting proteins from protein sequence using wavelet transformation. Front. Genetics 10, 90 (2019)

    Article  Google Scholar 

  41. Chen, X., Wang, C.-C., Yin, J., You, Z.-H.: Novel human miRNA-disease association inference based on random forest. Mol. Therapy-Nucleic Acids 13, 568–579 (2018)

    Article  Google Scholar 

  42. Zheng, K., You, Z.-H., Li, J.-Q., Wang, L., Guo, Z.-H., Huang, Y.-A.: iCDA-CGR: Identification of circRNA-disease associations based on Chaos Game Representation. PLOS Comput. Biol. 16, e1007872 (2020)

    Article  Google Scholar 

  43. Wang, L., et al.: LMTRDA: Using logistic model tree to predict MiRNA-disease associations by fusing multi-source information of sequences and similarities. PLoS Comput. Biol. 15, e1006865 (2019)

    Article  Google Scholar 

  44. Li, J.-Q., Rong, Z.-H., Chen, X., Yan, G.-Y., You, Z.-H.: MCMDA: matrix completion for MiRNA-disease association prediction. Oncotarget 8, 21187 (2017)

    Article  Google Scholar 

  45. Chen, Z.-H., You, Z.-H., Li, L.-P., Wang, Y.-B., Li, X.: RP-FIRF: prediction of self-interacting proteins using random projection classifier combining with finite impulse response filter. In: Huang, D.-S., Jo, K.-H., Zhang, X.-L. (eds.) ICIC 2018. LNCS, vol. 10955, pp. 232–240. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95933-7_29

    Chapter  Google Scholar 

  46. Zheng, K., You, Z.-H.: iMDA-BN: Identification of miRNA-Disease Associations based on the Biological Network and Graph Embedding Algorithm. bioRxiv (2020)

    Google Scholar 

  47. Wang, L., You, Z.-H., Li, L.-P., Zheng, K., Wang, Y.-B.: Predicting circRNA-disease associations using deep generative adversarial network based on multi-source fusion information. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 145-152. IEEE (2019)

    Google Scholar 

  48. Zheng, K., You, Z.-H., Wang, L., Wong, L., Zhan, Z.-H.: SPRDA: a matrix completion approach based on the structural perturbation to infer disease-associated Piwi-Interacting RNAs. bioRxiv (2020)

    Google Scholar 

  49. Chen, X., et al.: A novel computational model based on super-disease and miRNA for potential miRNA–disease association prediction. Mol. bioSyst. 13, 1202–1212 (2017)

    Article  Google Scholar 

  50. Zheng, K., You, Z.-H., Wang, L., Li, Y.-R., Wang, Y.-B., Jiang, H.-J.: MISSIM: improved miRNA-disease association prediction model based on chaos game representation and broad learning system. In: Huang, D.-S., Huang, Z.-K., Hussain, A. (eds.) ICIC 2019. LNCS (LNAI), vol. 11645, pp. 392–398. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26766-7_36

    Chapter  Google Scholar 

  51. Wang, M.-N., You, Z.-H., Wang, L., Li, L.-P., Zheng, K.: LDGRNMF: LncRNA-disease associations prediction based on graph regularized non-negative matrix factorization. Neurocomputing (2020)

    Google Scholar 

  52. Ma, L., et al.: Multi-neighborhood learning for global alignment in biological networks. IEEE/ACM Trans. Comput. Biol. Bioinform. (2020)

    Google Scholar 

  53. Chen, X., Huang, Y.-A., You, Z.-H., Yan, G.-Y., Wang, X.-S.: A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases. Bioinformatics 33, 733–739 (2017)

    Google Scholar 

  54. Wang, L., You, Z., Li, Y., Zheng, K., Huang, Y.: GCNCDA: A New Method for Predicting CircRNA-Disease Associations Based on Graph Convolutional Network Algorithm. bioRxiv 858837 (2019)

    Google Scholar 

  55. Wang, Y.-B., You, Z.-H., Yang, S., Yi, H.-C., Chen, Z.-H., Zheng, K.: A deep learning-based method for drug-target interaction prediction based on long short-term memory neural network. BMC Med. Inf. Decis. Making 20, 1–9 (2020)

    Article  Google Scholar 

  56. Lei, Y.-K., You, Z.-H., Ji, Z., Zhu, L., Huang, D.-S.: Assessing and predicting protein interactions by combining manifold embedding with multiple information integration. BMC Bioinform. 13, S3 (2012)

    Article  Google Scholar 

  57. Zheng, K., You, Z.-H., Wang, L., Zhou, Y., Li, L.-P., Li, Z.-W.: DBMDA: a unified embedding for sequence-based miRNA similarity measure with applications to predict and validate miRNA-disease associations. Mol. Therapy-Nucleic Acids 19, 602–611 (2020)

    Article  Google Scholar 

  58. Chen, X., Yan, C.C., Zhang, X., You, Z.-H.: Long non-coding RNAs and complex diseases: from experimental results to computational models. Briefings Bioinform. 18, 558–576 (2016)

    Google Scholar 

  59. You, Z.-H., Zhan, Z.-H., Li, L.-P., Zhou, Y., Yi, H.-C.: Accurate prediction of ncRNA-protein interactions from the integration of sequence and evolutionary information. Front. Genetics 9, 458 (2018)

    Article  Google Scholar 

  60. Zheng, K., You, Z.-H., Wang, L., Zhou, Y., Li, L.-P., Li, Z.-W.: MLMDA: a machine learning approach to predict and validate MicroRNA–disease associations by integrating of heterogenous information sources. J. Transl. Med. 17, 1–14 (2019)

    Google Scholar 

  61. You, Z.-H., Zhou, M., Luo, X., Li, S.: Highly efficient framework for predicting interactions between proteins. IEEE Trans. Cybern. 47, 731–743 (2017)

    Article  Google Scholar 

  62. Zheng, K., Wang, L., You, Z.-H.: CGMDA: an approach to predict and validate MicroRNA-disease associations by utilizing chaos game representation and LightGBM. IEEE Access 7, 133314–133323 (2019)

    Article  Google Scholar 

  63. Zhu, L., You, Z.-H., Huang, D.-S., Wang, B.: t-LSE: a novel robust geometric approach for modeling protein-protein interaction networks. PLoS ONE 8, e58368 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Xinjiang Natural Science Foundation under Grant 2017D01A78.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhu-Hong You or Lei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, K., You, ZH., Wang, L., Li, HY., Ji, BY. (2020). Predicting Human Disease-Associated piRNAs Based on Multi-source Information and Random Forest. In: Huang, DS., Jo, KH. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12464. Springer, Cham. https://doi.org/10.1007/978-3-030-60802-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60802-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60801-9

  • Online ISBN: 978-3-030-60802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics