Abstract
Digitalization of enterprise archives is the mainstream trend of archive management. This paper proposes a digital archive index management framework based on visual retrieval technology for unstructured digital archive management problems. The framework adopts the current mainstream deep local feature extraction scheme DELF Pipeline to carry out feature extraction for digital archives, and use the distributed inverted indexing framework Lucene to build an efficient indexing and retrieval system for digital archives. Through a large number of simulation experiments, it is proved that the framework can be well used for the management of enterprise unstructured digital archives, which supports dynamic incremental index construction and has high retrieval efficiency.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aihara, K., Takasu, A., Adachi, J.: A distributed index system for efficient query processing in peer-to-peer Networks. Commun. Comput. Signal Process. 1, 139–142 (2003)
Kanwar, R., Trivedi, P., Singh, K.: No SQL, a solution for distributed database management system. Int. J. Comput. Appl. 67(2), 6–9 (2013)
Mansuri, I.R., Sarawagi, S.: Integrating unstructured data into relational databases. In: Proceedings of the 22nd International Conference on Data Engineering (2006)
Dede, E., Sendir, B., Kuzlu, P., et al.: Processing cassandra datasets with Hadoop- streaming based approaches. IEEE Trans. Serv. Comput. 9(1), 46–58 (2016)
Corcoglioniti, F., Rospocher, M., Cattoni, R., et al.: The knowledge store: a storage framework for interlinking unstructured and structured knowledge. Int. J. Semant. Web Info. Syst. 11(2), 1–35 (2015)
Do, B.H., Wu, A., Biswal, S., et al.: Informatics in radiology: RADTF: a semantic search-enabled, natural language processor-generated radiology teaching file. Radio Graph. Rev. Publ. Radiol. Soc. North America Inc. 30(7), 2039–2048 (2010)
Wu, Q., Ma, S., Liu, Y.: Sub-event discovery and retrieval during natural hazards on social media data. World Wide Web 19(2), 277–297 (2015). https://doi.org/10.1007/s11280-015-0359-8
Yang, J., Jiang, B., Li, B., et al.: A fast image retrieval method designed for network big data. IEEE Trans. Ind. Inform. PP(99), 1 (2017)
Weng, C.-C., Chen, H., Fuh, C.-S.: A novel automatic white balance method for digital still cameras. In: IEEE International Symposium on Circuits & Systems, 26 June 2005
Wang, Q., et al.: Image classification based on deep local feature coding. In: International Symposium on Intelligent Signal Processing & Communication Systems (2017)
Lan, Z., Zhu, Y., Hauptmann, A.G.: Deep local video feature for action recognition (2017)
Zhu, Q., et al.: A deep-local-global feature fusion framework for high spatial resolution imagery scene classification. Remote Sens. 10(4), 568 (2018)
David, G.L.: Object recognition from local scale-invariant features. In: International Conference on Computer Vision, Corfu, Greece, September 1999, pp. 1150–1157 (1999)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32
Rublee, E., et al.: ORB: an efficient alternative to SIFT or SURF. In: International Conference on Computer Vision IEEE (2012)
Noh, H., et al.: Large-scale image retrieval with attentive deep local features. In: 2017 IEEE International Conference on Computer Vision (ICCV). IEEE (2017)
Zhou, D., Xie, K.: Lucene search engine. Comput. Eng. 33(18), 95–97 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, H. (2020). Research on Unstructured Electronic Archives Query Based on Visual Retrieval Technology. In: Huang, DS., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12463. Springer, Cham. https://doi.org/10.1007/978-3-030-60799-9_52
Download citation
DOI: https://doi.org/10.1007/978-3-030-60799-9_52
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60798-2
Online ISBN: 978-3-030-60799-9
eBook Packages: Computer ScienceComputer Science (R0)