Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-layer Pointpillars: Multi-layer Feature Abstraction for Object Detection from Point Cloud

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12305))

Included in the following conference series:

  • 2798 Accesses

Abstract

In order to extract the spatial structure features of the original point cloud, multi layers pointpillars model, a fast and efficient one-stage network, is proposed for object detection from point cloud. Firstly, point cloud are divided into multi layers along z axis, by each layer to generate pillars in the vertical direction, and multi layers pseudo-image representing for multi layers are created by the method of pointpillars. Then, the multi layers and complete pseudo-image are fused as the input of RPN, and the feature maps with context information and multi-scale features are obtained. Finally, the detection boxes and classification score were obtained by SSD head according to the feature maps. We get a high quality prediction box and classification results. The experimental results show that multi-layer pointpillars can get higher precision than the original pointpillars.

The first author is a student. The work is supported by the National Natural Science Foundation of China (No. 41971424, No. 61701191), Xiamen Science and Technology Project (No. 3502Z20183032, No. 3502Z20191022, No. 3502Z20203057).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Qi, C.R., et al.: Frustum PointNets for 3D Object Detection from RGB-D Data (2017)

    Google Scholar 

  2. Ku, J., et al.: Joint 3D Proposal Generation and Object Detection from View Aggregation (2017)

    Google Scholar 

  3. Yang, B., Luo, W., Urtasun, R.: PIXOR: Real-time 3D Object Detection from Point Clouds (2018)

    Google Scholar 

  4. Liang, M., Yang, B., Wang, S., Urtasun, R.: Deep continuous fusion for multi-sensor 3D object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 663–678. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_39

    Chapter  Google Scholar 

  5. Qi, C.R., et al.: PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation (2016)

    Google Scholar 

  6. Qi, C.R., et al.: PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space (2017)

    Google Scholar 

  7. Shi, S., Wang, X., Li, H.: PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud (2018)

    Google Scholar 

  8. Shi, S., et al.: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network (2019)

    Google Scholar 

  9. Lang, A.H., et al.: PointPillars: Fast Encoders for Object Detection from Point Clouds (2018)

    Google Scholar 

  10. Riegler, G., Ulusoy, A.O., Geiger, A.: OctNet: Learning Deep 3D Representations at High Resolutions (2016)

    Google Scholar 

  11. Song, S., et al.: Semantic scene completion from a single depth image. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2017)

    Google Scholar 

  12. Zhou, Y., Tuzel, O.: VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection (2017)

    Google Scholar 

  13. Yan, Y., Mao, Y., Li, B.: SECOND: sparsely embedded convolutional detection. Sensors 18(10), 3337 (2018)

    Article  Google Scholar 

  14. Wu, B., et al.: SqueezeSeg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object Segmentation from 3D LiDAR Point Cloud (2017)

    Google Scholar 

  15. Liu, W., et al.: SSD: Single Shot MultiBox Detector (2016)

    Google Scholar 

  16. Chen, X., et al.: Multi-View 3D Object Detection Network for Autonomous Driving (2016)

    Google Scholar 

  17. Yang, Z., et al.: STD: Sparse-to-Dense 3D Object Detector for Point Cloud (2019)

    Google Scholar 

  18. Engelcke, M., et al.: Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks (2016)

    Google Scholar 

  19. Shin, K., Kwon, Y.P., Tomizuka, M.: RoarNet: A Robust 3D Object Detection based on RegiOn Approximation Refinement (2018)

    Google Scholar 

  20. Simon, M., et al.: Complex-YOLO: Real-time 3D Object Detection on Point Clouds (2018)

    Google Scholar 

  21. Chen, L.C., et al.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834 (2018)

    Article  Google Scholar 

  22. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2012)

    Google Scholar 

  23. Song, S., Xiao, J.: Deep sliding shapes for amodal 3D object detection in RGB-D images. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2016)

    Google Scholar 

  24. Xu, D., Anguelov, D., Jain, A.: PointFusion: deep sensor fusion for 3D bounding box estimation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2018)

    Google Scholar 

  25. Zhao, H., et al.: Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2017)

    Google Scholar 

  26. Gonzalez, A., et al.: Multiview random forest of local experts combining RGB and LIDAR data for pedestrian detection. In: 2015 IEEE Intelligent Vehicles Symposium (IV). IEEE (2015)

    Google Scholar 

  27. Jiang, M., et al.: PointSIFT: A SIFT-like Network Module for 3D Point Cloud Semantic Segmentation (2018)

    Google Scholar 

  28. Li, Y., et al.: PointCNN: Convolution on \(\cal{X}\)-Transformed Points (2018)

    Google Scholar 

  29. Li, J., Chen, B.M., Lee, G.H.: SO-Net: Self-Organizing Network for Point Cloud Analysis (2018)

    Google Scholar 

  30. Dai, A.: ScanNet: richly-annotated 3D reconstructions of indoor scenes. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongyue Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, S. et al. (2020). Multi-layer Pointpillars: Multi-layer Feature Abstraction for Object Detection from Point Cloud. In: Peng, Y., et al. Pattern Recognition and Computer Vision. PRCV 2020. Lecture Notes in Computer Science(), vol 12305. Springer, Cham. https://doi.org/10.1007/978-3-030-60633-6_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60633-6_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60632-9

  • Online ISBN: 978-3-030-60633-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics