Nothing Special   »   [go: up one dir, main page]

Skip to main content

Detection of High-Risk Depression Groups Based on Eye-Tracking Data

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12306))

Included in the following conference series:

  • 1656 Accesses

Abstract

Depression is the most common psychiatric disorder in the general population. An effective treatment of depression requires early detection. In reschedule this paper, a novel algorithm is presented based on eye-tracking and a self-rating high-risk depression screening scale (S-hr-DS) for early depression screening. In this algorithm, a subject scan path is encoded by semantic areas of interest (AOIs). AOIs are dynamically generated by the POS (part-of-speech) tagging of Chinese words in the S-hr-DS items. The proposed method considers both temporal and spatial information of the eye-tracking data and encodes the subject scan path with semantic features of items. The support vector machine recursive feature elimination (SVM-RFE) algorithm is employed for feature selection and model training. Experimental results on a data set including 69 subjects show that our proposed algorithm can achieve an accuracy of 81% with 76% in sensitivity and 79% in F1-score, demonstrating a potential application in high-risk depression detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armitage, R., Hoffmann, R.F.: Sleep EEG, depression and gender. Sleep Med. Rev. 5(3), 237–246 (2001)

    Article  Google Scholar 

  2. Association, A.P., et al.: DSM-5. diagnostic and statistical manual of mental disorders. Washington, DC: Author (2013)

    Google Scholar 

  3. Bartzokis, G., et al.: In vivo evaluation of brain iron in alzheimer disease using magnetic resonance imaging. Arch. Gen. Psychiatry 57(1), 47–53 (2000)

    Article  Google Scholar 

  4. Beck, A.T., Steer, R.A., Brown, G.K., et al.: Beck depression inventory-ii. San Antonio, vol. 78, No. 2, pp. 490–498 (1996)

    Google Scholar 

  5. Bianchi, R., Laurent, E.: Emotional information processing in depression and burnout: an eye-tracking study. Eur. Arch. Psychiatry Clin. Neurosci. 265(1), 27–34 (2015)

    Article  Google Scholar 

  6. Ding, X., Yue, X., Zheng, R., Bi, C., Li, D., Yao, G.: Classifying major depression patients and healthy controls using EEG, eye tracking and galvanic skin response data. J. Affect. Disord. 251, 156–161 (2019)

    Article  Google Scholar 

  7. Fan, D.P., Wang, W., Cheng, M.M., Shen, J.: Shifting more attention to video salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8554–8564 (2019)

    Google Scholar 

  8. Gotlib, I.H.: Eeg alpha asymmetry, depression, and cognitive functioning. Cognition Emotion 12(3), 449–478 (1998)

    Article  Google Scholar 

  9. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1–3), 389–422 (2002)

    Article  MATH  Google Scholar 

  10. Han, D., Kim, J.: Unified simultaneous clustering and feature selection for unlabeled and labeled data. IEEE Trans. Neural Netw. Learn. Syst. 29(12), 6083–6098 (2018)

    Article  Google Scholar 

  11. Harikrishna, S., Farquad, M., et al.: Credit scoring using support vector machine: a comparative analysis. In: Advanced Materials Research, vol. 433, pp. 6527–6533. Trans Tech Publ (2012)

    Google Scholar 

  12. Harris, M.S., Reilly, J.L., Thase, M.E., Keshavan, M.S., Sweeney, J.A.: Response suppression deficits in treatment-naive first-episode patients with schizophrenia, psychotic bipolar disorder and psychotic major depression. Psychiatry Res. 170(2–3), 150–156 (2009)

    Article  Google Scholar 

  13. Kellough, J.L., Beevers, C.G., Ellis, A.J., Wells, T.T.: Time course of selective attention in clinically depressed young adults: an eye tracking study. Behav. Res. Ther. 46(11), 1238–1243 (2008)

    Article  Google Scholar 

  14. Koster, E.H., De Raedt, R., Goeleven, E., Franck, E., Crombez, G.: Mood-congruent attentional bias in dysphoria: maintained attention to and impaired disengagement from negative information. Emotion 5(4), 446 (2005)

    Article  Google Scholar 

  15. Ling, H., Qian, C., Kang, W., Liang, C., Chen, H.: Combination of support vector machine and k-fold cross validation to predict compressive strength of concrete in marine environment. Constr. Build. Mater. 206, 355–363 (2019)

    Article  Google Scholar 

  16. Liu, X., et al.: Eye movement pattern and mental retardation in depression. In: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 970–974. IEEE (2017)

    Google Scholar 

  17. Ma, Y., et al.: Easysvm: a visual analysis approach for open-box support vector machines. Comput. Visual Media 3(2), 161–175 (2017)

    Article  Google Scholar 

  18. Mundra, P.A., Rajapakse, J.C.: SVM-RFE with MRMR filter for gene selection. IEEE Trans. Nanobiosci. 9(1), 31–37 (2009)

    Article  Google Scholar 

  19. Organization, W.H., et al.: Depression and other common mental disorders: global health estimates. World Health Organization, Technical report (2017)

    Google Scholar 

  20. Radloff, L.S.: The CES-D scale: a self-report depression scale for research in the general population. Appl. Psychol. Meas. 1(3), 385–401 (1977)

    Article  Google Scholar 

  21. Sahran, S., Albashish, D., Abdullah, A., Shukor, N.A., Pauzi, S.H.M.: Absolute cosine-based SVM-RFE feature selection method for prostate histopathological grading. Artif. Intell. Med. 87, 78–90 (2018)

    Article  Google Scholar 

  22. Trotzek, M., Koitka, S., Friedrich, C.M.: Utilizing neural networks and linguistic metadata for early detection of depression indications in text sequences. arXiv preprint arXiv:1804.07000 (2018)

  23. Wang, W., Shen, J., Yang, R., Porikli, F.: Saliency-aware video object segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 40(1), 20–33 (2017)

    Article  Google Scholar 

  24. Wulsin, L.R., Vaillant, G.E., Wells, V.E.: A systematic review of the mortality of depression. Psychosom. Med. 61(1), 6–17 (1999)

    Article  Google Scholar 

  25. Zeng, S., Niu, J., Zhu, J., Li, X.: A study on depression detection using eye tracking. In: Tang, Y., Zu, Q., Rodríguez García, J.G. (eds.) HCC 2018. LNCS, vol. 11354, pp. 516–523. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15127-0_52

    Chapter  Google Scholar 

  26. Zung, W.W.: A self-rating depression scale. Arch. Gen. Psychiatry 12(1), 63–70 (1965)

    Article  Google Scholar 

  27. Zuroff, D.C., Mongrain, M., Santor, D.A.: Conceptualizing and measuring personality vulnerability to depression: comment on coyne and whiffen (1995) (2004)

    Google Scholar 

Download references

Acknowledgement

The work reported in this paper was supported by the Awareness and Cognitive Neuroscience based Multimodal Co-sensing Technology Project (ACNMCT) in charge of professor Danmin Miao of Department of military medical psychology, Air Force Medial University, the Natural Science Foundation of China No. 61473243, and the Natural Science Foundation of Jiangsu Province No. BK20171249. The authors thank the anonymous reviewers for their constructive comments and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, S. et al. (2020). Detection of High-Risk Depression Groups Based on Eye-Tracking Data. In: Peng, Y., et al. Pattern Recognition and Computer Vision. PRCV 2020. Lecture Notes in Computer Science(), vol 12306. Springer, Cham. https://doi.org/10.1007/978-3-030-60639-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60639-8_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60638-1

  • Online ISBN: 978-3-030-60639-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics