Abstract
Discovering the visual representation(s) of a tourism destination is a challenging problem because it should be highly discriminating and frequently appeared in the travel photos of this destination. To address this issue, we propose a deep relevance feature clustering method (DRFC). To ensure the discrimination, DRFC uses layer-wise relevance propagvel feature maps to locate the region that contributes the most to network prediction. For frequency, DRFC clusters the extracted relevance features in a feature space according to their density, and selects highly dense instances for the visual representation. The experiments 100K photos of 20 tourism destinations show that DRFC can discover the discriminating and frequent visual representation, and outperforms the state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS One 10(7), e0130140 (2015)
Binder, A., Montavon, G., Lapuschkin, S., Müller, K.-R., Samek, W.: Layer-wise relevance propagation for neural networks with local renormalization layers. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9887, pp. 63–71. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44781-0_8
Bronner, F., De Hoog, R.: Vacationers and eWOM: who posts, and why, where, and what? J. Travel Res. 50(1), 15–26 (2011)
Chen, Z., Maffra, F., Sa, I., Chli, M.: Only look once, mining distinctive landmarks from convnet for visual place recognition. In: IROS, pp. 9–16 (2017)
Chum, O., et al.: Large-scale discovery of spatially related images. IEEE TPAMI 32(2), 371–377 (2009)
Doersch, C., Singh, S., Gupta, A., Sivic, J., Efros, A.A.: What makes Paris look like Paris? Commun. ACM 58(12), 103–110 (2015)
Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features of a deep network. Univ. Montreal 1341(3), 1 (2009)
Gong, Y., Pawlowski, M., Yang, F., Brandy, L., Bourdev, L., Fergus, R.: Web scale photo hash clustering on a single machine. In: CVPR, pp. 19–27 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Kim, S., Jin, X., Han, J.: DisiClass: discriminative frequent pattern-based image classification. In: KDD Workshop, p. 7 (2010)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)
Lapuschkin, S., Binder, A., Montavon, G., Muller, K.R., Samek, W.: Analyzing classifiers: fisher vectors and deep neural networks. In: CVPR, pp. 2912–2920 (2016)
Li, H., Ellis, J.G., Zhang, L., Chang, S.F.: PatternNet: visual pattern mining with deep neural network. In: ICMR, pp. 291–299 (2018)
Li, Y., Liu, L., Shen, C., Van Den Hengel, A.: Mining mid-level visual patterns with deep CNN activations. IJCV 121(3), 344–364 (2017)
Lowe, D.G., et al.: Object recognition from local scale-invariant features. In: ICCV, pp. 1150–1157 (1999)
Memon, I., Chen, L., Majid, A., Lv, M., Hussain, I., Chen, G.: Travel recommendation using geo-tagged photos in social media for tourist. Wirel. Pers. Commun. 80(4), 1347–1362 (2015)
Michaelidou, N., Siamagka, N.T., Moraes, C., Micevski, M.: Do marketers use visual representations of destinations that tourists value? Comparing visitors’ image of a destination with marketer-controlled images online. J. Travel Res. 52(6), 789–804 (2013)
Pan, S., Lee, J., Tsai, H.: Travel photos: motivations, image dimensions, and affective qualities of places. Tourism Manage. 40, 59–69 (2014)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)
Vu, H.Q., Li, G., Law, R., Ye, B.H.: Exploring the travel behaviors of inbound tourists to Hong Kong using geotagged photos. Tourism Manage. 46, 222–232 (2015)
Yang, L., Xie, X., Lai, J.: Learning discriminative visual elements using part-based convolutional neural network. Neurocomputing 316, 135–143 (2018)
Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE TIP 19(2), 533–544 (2009)
Zhang, W., Cao, X., Wang, R., Guo, Y., Chen, Z.: Binarized mode seeking for scalable visual pattern discovery. In: CVPR, pp. 3864–3872 (2017)
Zheng, Y.T., Zha, Z.J., Chua, T.S.: Mining travel patterns from geotagged photos. ACM T. Intel. Syst. Tech. 3(3), 56 (2012)
Acknowledgments
This work is supported by the Science and Technology Plan of Xi’an (20191122015KYPT011JC013) and the Fundamental Research Funds of the Central Universities of China (No. JX18001).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Q., Zhu, Z., Liang, X., Shi, H., Cao, P. (2020). Deep Relevance Feature Clustering for Discovering Visual Representation of Tourism Destination. In: Peng, Y., et al. Pattern Recognition and Computer Vision. PRCV 2020. Lecture Notes in Computer Science(), vol 12307. Springer, Cham. https://doi.org/10.1007/978-3-030-60636-7_28
Download citation
DOI: https://doi.org/10.1007/978-3-030-60636-7_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60635-0
Online ISBN: 978-3-030-60636-7
eBook Packages: Computer ScienceComputer Science (R0)