Nothing Special   »   [go: up one dir, main page]

Skip to main content

Deep Relevance Feature Clustering for Discovering Visual Representation of Tourism Destination

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12307))

Included in the following conference series:

  • 1216 Accesses

Abstract

Discovering the visual representation(s) of a tourism destination is a challenging problem because it should be highly discriminating and frequently appeared in the travel photos of this destination. To address this issue, we propose a deep relevance feature clustering method (DRFC). To ensure the discrimination, DRFC uses layer-wise relevance propagvel feature maps to locate the region that contributes the most to network prediction. For frequency, DRFC clusters the extracted relevance features in a feature space according to their density, and selects highly dense instances for the visual representation. The experiments 100K photos of 20 tourism destinations show that DRFC can discover the discriminating and frequent visual representation, and outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.tripadvisor.com.

References

  1. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS One 10(7), e0130140 (2015)

    Article  Google Scholar 

  2. Binder, A., Montavon, G., Lapuschkin, S., Müller, K.-R., Samek, W.: Layer-wise relevance propagation for neural networks with local renormalization layers. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9887, pp. 63–71. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44781-0_8

    Chapter  MATH  Google Scholar 

  3. Bronner, F., De Hoog, R.: Vacationers and eWOM: who posts, and why, where, and what? J. Travel Res. 50(1), 15–26 (2011)

    Article  Google Scholar 

  4. Chen, Z., Maffra, F., Sa, I., Chli, M.: Only look once, mining distinctive landmarks from convnet for visual place recognition. In: IROS, pp. 9–16 (2017)

    Google Scholar 

  5. Chum, O., et al.: Large-scale discovery of spatially related images. IEEE TPAMI 32(2), 371–377 (2009)

    Article  Google Scholar 

  6. Doersch, C., Singh, S., Gupta, A., Sivic, J., Efros, A.A.: What makes Paris look like Paris? Commun. ACM 58(12), 103–110 (2015)

    Article  Google Scholar 

  7. Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features of a deep network. Univ. Montreal 1341(3), 1 (2009)

    Google Scholar 

  8. Gong, Y., Pawlowski, M., Yang, F., Brandy, L., Bourdev, L., Fergus, R.: Web scale photo hash clustering on a single machine. In: CVPR, pp. 19–27 (2015)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  10. Kim, S., Jin, X., Han, J.: DisiClass: discriminative frequent pattern-based image classification. In: KDD Workshop, p. 7 (2010)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  12. Lapuschkin, S., Binder, A., Montavon, G., Muller, K.R., Samek, W.: Analyzing classifiers: fisher vectors and deep neural networks. In: CVPR, pp. 2912–2920 (2016)

    Google Scholar 

  13. Li, H., Ellis, J.G., Zhang, L., Chang, S.F.: PatternNet: visual pattern mining with deep neural network. In: ICMR, pp. 291–299 (2018)

    Google Scholar 

  14. Li, Y., Liu, L., Shen, C., Van Den Hengel, A.: Mining mid-level visual patterns with deep CNN activations. IJCV 121(3), 344–364 (2017)

    Article  MathSciNet  Google Scholar 

  15. Lowe, D.G., et al.: Object recognition from local scale-invariant features. In: ICCV, pp. 1150–1157 (1999)

    Google Scholar 

  16. Memon, I., Chen, L., Majid, A., Lv, M., Hussain, I., Chen, G.: Travel recommendation using geo-tagged photos in social media for tourist. Wirel. Pers. Commun. 80(4), 1347–1362 (2015)

    Article  Google Scholar 

  17. Michaelidou, N., Siamagka, N.T., Moraes, C., Micevski, M.: Do marketers use visual representations of destinations that tourists value? Comparing visitors’ image of a destination with marketer-controlled images online. J. Travel Res. 52(6), 789–804 (2013)

    Article  Google Scholar 

  18. Pan, S., Lee, J., Tsai, H.: Travel photos: motivations, image dimensions, and affective qualities of places. Tourism Manage. 40, 59–69 (2014)

    Article  Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  20. Vu, H.Q., Li, G., Law, R., Ye, B.H.: Exploring the travel behaviors of inbound tourists to Hong Kong using geotagged photos. Tourism Manage. 46, 222–232 (2015)

    Article  Google Scholar 

  21. Yang, L., Xie, X., Lai, J.: Learning discriminative visual elements using part-based convolutional neural network. Neurocomputing 316, 135–143 (2018)

    Article  Google Scholar 

  22. Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE TIP 19(2), 533–544 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Zhang, W., Cao, X., Wang, R., Guo, Y., Chen, Z.: Binarized mode seeking for scalable visual pattern discovery. In: CVPR, pp. 3864–3872 (2017)

    Google Scholar 

  24. Zheng, Y.T., Zha, Z.J., Chua, T.S.: Mining travel patterns from geotagged photos. ACM T. Intel. Syst. Tech. 3(3), 56 (2012)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Science and Technology Plan of Xi’an (20191122015KYPT011JC013) and the Fundamental Research Funds of the Central Universities of China (No. JX18001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Q., Zhu, Z., Liang, X., Shi, H., Cao, P. (2020). Deep Relevance Feature Clustering for Discovering Visual Representation of Tourism Destination. In: Peng, Y., et al. Pattern Recognition and Computer Vision. PRCV 2020. Lecture Notes in Computer Science(), vol 12307. Springer, Cham. https://doi.org/10.1007/978-3-030-60636-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60636-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60635-0

  • Online ISBN: 978-3-030-60636-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics