Abstract
While federated learning is a promising approach for training deep learning models over distributed sensitive datasets, it presents new challenges for machine learning, especially when applied in the medical domain where multi-centric data heterogeneity is common. Building on previous domain adaptation works, this paper proposes a novel federated learning approach for deep learning architectures via the introduction of local-statistic batch normalization (BN) layers, resulting in collaboratively-trained, yet center-specific models. This strategy improves robustness to data heterogeneity while also reducing the potential for information leaks by not sharing the center-specific layer activation statistics. We benchmark the proposed method on the classification of tumorous histopathology image patches extracted from the Camelyon16 and Camelyon17 datasets. We show that our approach compares favorably to previous state-of-the-art methods, especially for transfer learning across datasets.
M. Andreux and J. O. du Terrail contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings ACM Conference on Computer and Communications Security, October 2016
Bandi, P., et al.: From detection of individual metastases to classification of lymph node status at the patient level: the camelyon17 challenge. IEEE Trans. Med. Imaging 38(2), 550–560 (2018)
Bejnordi, B.E., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017)
Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning, iACR Cryptology Preprint (2017)
Bonawitz, K., et al.: Proceedings SysML Conference, Palo Alto, CA (2019)
Caldas, S., et al.: Leaf: a benchmark for federated settings. arXiv preprint arXiv:1812.01097 (2018)
Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_51
Courtiol, P., et al.: Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nat. Med. 25(10), 1519–1525 (2019)
Dimitriou, N., Arandjelović, O., Caie, P.D.: Deep learning for whole slide image analysis: an overview. Front. Med. 6 (2019)
Goetz, J., Malik, K., Bui, D., Moon, S., Liu, H., Kumar, A.: Active federated learning (2019). arXiv Preprint [cs.LG]:1909.12641
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, June 2016
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
Kairouz, P., et al.: Advances and open problems in federated learning (2019). arXiv Preprint [cs.LG]:1912.04977
Kingma, D., Ba, J.: Adam: a method for stochastic optimization, December 2014. arXiv Preprint [cs.LG]:1412.698
Komura, D., Ishikawa, S.: Machine learning methods for histopathological image analysis. Comput. Struct. Biotechnol. J. 16, 34–42 (2018)
Konecný, J., McMahan, H.B., Ramage, D., Richtárik, P.: Federated optimization: distributed machine learning for on-device intelligence, October 2016. arXiv Preprint [cs.LG]:1610.02527
Li, T., Sahhu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions (2019). arXiv Preprint [cs.LG]:1908.07873
Li, X., Huang, K., Yang, W., Wang, S., Zhang, Z.: On the convergence of FedAvg on non-IID data (2019). arXiv Preprint [stat.ML]:1907.02189
Li, Y., Wang, N., Shi, J., Liu, J., Hou, X.: Revisiting batch normalization for practical domain adaptation. arXiv preprint arXiv:1603.04779 (2016)
Litjens, G., et al.: 1399 H&E-stained sentinel lymph node sections of breast cancer pateints: the CAMELYON dataset. GigaScience 7(6), giy065 (2018)
McMahan, H.B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data, February 2017. arXiv Preprint [cs.LG]:1602.05629
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sahu, A.K., Li, T., Sanjabi, M., Zaheer, M., Talwalkar, A., Smith, V.: On the convergence of federated optimization in heterogeneous networks (2018). arXiv Preprint [cs.LG]: 1812.06127
Sattler, F., Mŭller, K.R., Samek, W.: Clustered federated learnig: model-agnostic distributed multi-task optimization under privacy constraints (2019). arXiv Preprint [cs.LG]:1910.01991
Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321. ACM (2015)
Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE (2017)
Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 6105–6114. PMLR, Long Beach, 09–15 June 2019. http://proceedings.mlr.press/v97/tan19a.html
Vapnik, V.: Principles of risk minimization for learning theory. In: Advances in Neural Information Processing Systems, pp. 831–838 (1992)
Vepakomma, P., Gupta, O., Dubey, A., Raskar, R.: Reducing leakage in distributed deep learning for sensitive health data. In: AI for Social Good ICLR Workshop, May 2019
Zhang, S., Choromanska, A.E., LeCun, Y.: Deep learning with elastic averaging SGD. In: Advances in Neural Information Processing Systems, pp. 685–693 (2015)
Zhu, L., Liu, Z., Han, S.: Deep leakage from gradients. In: Advances in Neural Information Processing Systems, December 2019
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Andreux, M., du Terrail, J.O., Beguier, C., Tramel, E.W. (2020). Siloed Federated Learning for Multi-centric Histopathology Datasets. In: Albarqouni, S., et al. Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning. DART DCL 2020 2020. Lecture Notes in Computer Science(), vol 12444. Springer, Cham. https://doi.org/10.1007/978-3-030-60548-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-60548-3_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60547-6
Online ISBN: 978-3-030-60548-3
eBook Packages: Computer ScienceComputer Science (R0)