Nothing Special   »   [go: up one dir, main page]

Skip to main content

Extracting the Collaboration of Entity and Attribute: Gated Interactive Networks for Aspect Sentiment Analysis

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12430))

  • 3326 Accesses

Abstract

Aspect-based sentiment analysis (ABSA) is composed of aspect term sentiment analysis (ATSA) and aspect category sentiment analysis (ACSA). In the task of ACSA, some existing methods simply bound the aspect category (entity and attribute) as an integrated whole or adopt a randomly initialized embedding to represent the aspect category, which introduces a defective representation of aspect and leads to the ignorance of independent contextual sentiment of entity and attribute. Some other methods only consider the entity and disregard the attribute in predicting the sentiment polarity of aspect category, which leads to the ignorance of the collaboration between the entity and attribute. To this end, we propose a Gated Interactive Network (GIN) for aspect category sentiment analysis in this paper. To be specific, for each context and the corresponding aspect, we adopt two attention-based networks to learn the contextual sentiment for the entity and attribute independently and interactively. Further, based on the interactive attentions learned from entities and attributes, the coordinative gate units are exploited to reconcile and purify the sentiment features for the aspect sentiment prediction. Experimental results on two benchmark datasets demonstrate that our proposed model achieves state-of-the-art performance in the task of ACSA.

R. Yin and H. Su—Authors equally contributed to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In this paper, we focus on the sentiment analysis of aspect category, i.e. aspect category sentiment analysis (ACSA), and the following “aspect” represents “aspect category”.

  2. 2.

    We removed aspects express different sentiment polarities in the same review sentence.

References

  1. Chen, P., Sun, Z., Bing, L., Yang, W.: Recurrent attention network on memory for aspect sentiment analysis. In: EMNLP, pp. 452–461 (2017)

    Google Scholar 

  2. Chen, Z., Qian, T.: Transfer capsule network for aspect level sentiment classification. In: ACL, pp. 547–556 (2019)

    Google Scholar 

  3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL, pp. 4171–4186 (2019)

    Google Scholar 

  4. Du, C., et al.: Capsule network with interactive attention for aspect-level sentiment classification. In: EMNLP-IJCNLP, pp. 5488–5497 (2019)

    Google Scholar 

  5. Du, J., Gui, L., He, Y., Xu, R., Wang, X.: Convolution-based neural attention with applications to sentiment classification. IEEE Access 7, 27983–27992 (2019)

    Article  Google Scholar 

  6. Fan, F., Feng, Y., Zhao, D.: Multi-grained attention network for aspect-level sentiment classification. In: EMNLP, pp. 3433–3442 (2018)

    Google Scholar 

  7. He, R., Lee, W.S., Ng, H.T., Dahlmeier, D.: Exploiting document knowledge for aspect-level sentiment classification. In: ACL, pp. 579–585 (2018)

    Google Scholar 

  8. He, R., Lee, W.S., Ng, H.T., Dahlmeier, D.: An interactive multi-task learning network for end-to-end aspect-based sentiment analysis. In: ACL, pp. 504–515 (2019)

    Google Scholar 

  9. Huang, B., Carley, K.: Syntax-aware aspect level sentiment classification with graph attention networks. In: EMNLP-IJCNLP, pp. 5469–5477 (2019)

    Google Scholar 

  10. Huang, B., Ou, Y., Carley, K.M.: Aspect level sentiment classification with attention-over-attention neural networks. In: Thomson, R., Dancy, C., Hyder, A., Bisgin, H. (eds.) SBP-BRiMS 2018. LNCS, vol. 10899, pp. 197–206. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93372-6_22

    Chapter  Google Scholar 

  11. Jiang, Q., Chen, L., Xu, R., Ao, X., Yang, M.: A challenge dataset and effective models for aspect-based sentiment analysis. In: EMNLP-IJCNLP, pp. 6280–6285 (2019)

    Google Scholar 

  12. Liu, B., Zhang, L.: A survey of opinion mining and sentiment analysis. In: Aggarwal, C., Zhai, C. (eds.) Mining Text Data. Springer, Boston (2012). https://doi.org/10.1007/978-1-4614-3223-4_13

    Chapter  Google Scholar 

  13. Ma, D., Li, S., Zhang, X., Wang, H.: Interactive attention networks for aspect-level sentiment classification. In: IJCAI, pp. 4068–4074 (2017)

    Google Scholar 

  14. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: EMNLP, pp. 1532–1543 (2014)

    Google Scholar 

  15. Pontiki, M., et al.: Semeval-2016 task 5: aspect based sentiment analysis. In: SemEval, pp. 19–30 (2016)

    Google Scholar 

  16. Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., Androutsopoulos, I.: Semeval-2015 task 12: aspect based sentiment analysis. In: SemEval, pp. 486–495 (2015)

    Google Scholar 

  17. Ruder, S., Ghaffari, P., Breslin, J.G.: A hierarchical model of reviews for aspect-based sentiment analysis. In: EMNLP, pp. 999–1005 (2016)

    Google Scholar 

  18. Song, Y., Wang, J., Jiang, T., Liu, Z., Rao, Y.: Attentional encoder network for targeted sentiment classification. arXiv preprint arXiv:1902.09314 (2019)

  19. Tang, D., Qin, B., Feng, X., Liu, T.: Effective LSTMs for target-dependent sentiment classification. In: COLING, pp. 3298–3307 (2016)

    Google Scholar 

  20. Tang, D., Qin, B., Liu, T.: Aspect level sentiment classification with deep memory network. In: EMNLP, pp. 214–224 (2016)

    Google Scholar 

  21. Wang, Y., Huang, M., Zhu, X., Zhao, L.: Attention-based LSTM for aspect-level sentiment classification. In: EMNLP, pp. 606–615 (2016)

    Google Scholar 

  22. Xue, W., Li, T.: Aspect based sentiment analysis with gated convolutional networks. In: ACL, pp. 2514–2523 (2018)

    Google Scholar 

  23. Xue, W., Zhou, W., Li, T., Wang, Q.: MTNA: a neural multi-task model for aspect category classification and aspect term extraction on restaurant reviews. In: IJCNLP, pp. 151–156 (2017)

    Google Scholar 

  24. Zhang, C., Li, Q., Song, D.: Aspect-based sentiment classification with aspect-specific graph convolutional networks. In: EMNLP-IJCNLP, pp. 4567–4577 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China 61876053, 61632011, Shenzhen Foundational Research Funding JCYJ20180507183527919, JCYJ20180507183608379, Guangdong Province Covid-19 Pandemic Control Research Funding 2020KZDZX1224. We thank Dr. Lin Gui for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruifeng Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yin, R., Su, H., Liang, B., Du, J., Xu, R. (2020). Extracting the Collaboration of Entity and Attribute: Gated Interactive Networks for Aspect Sentiment Analysis. In: Zhu, X., Zhang, M., Hong, Y., He, R. (eds) Natural Language Processing and Chinese Computing. NLPCC 2020. Lecture Notes in Computer Science(), vol 12430. Springer, Cham. https://doi.org/10.1007/978-3-030-60450-9_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60450-9_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60449-3

  • Online ISBN: 978-3-030-60450-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics