Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Linear Arboricity Conjecture for 3-Degenerate Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12301))

Included in the following conference series:

Abstract

A k-linear coloring of a graph G is an edge coloring of G with k colors so that each color class forms a linear forest—a forest whose each connected component is a path. The linear arboricity \(\chi _l'(G)\) of G is the minimum integer k such that there exists a k-linear coloring of G. Akiyama, Exoo and Harary conjectured in 1980 that for every graph G, \(\chi _l'(G)\le \left\lceil \frac{\varDelta (G)+1}{2}\right\rceil \) where \(\varDelta (G)\) is the maximum degree of G. We prove the conjecture for 3-degenerate graphs. This establishes the conjecture for graphs of treewidth at most 3 and provides an alternative proof for the conjecture for triangle-free planar graphs. Our proof also yields an O(n)-time algorithm that partitions the edge set of any 3-degenerate graph G on n vertices into at most \(\left\lceil \frac{\varDelta (G)+1}{2}\right\rceil \) linear forests. Since \(\chi '_l(G)\ge \left\lceil \frac{\varDelta (G)}{2}\right\rceil \) for any graph G, the partition produced by the algorithm differs in size from the optimum by at most an additive factor of 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akiyama, J., Exoo, G., Harary, F.: Covering and packing in graphs III: cyclic and acyclic invariants. Math. Slovaca 30(4), 405–417 (1980)

    MathSciNet  MATH  Google Scholar 

  2. Akiyama, J., Exoo, G., Harary, F.: Covering and packing in graphs IV: linear arboricity. Networks 11, 69–72 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N.: The linear arboricity of graphs. Israel J. Math. 62(3), 311–325 (1988). https://doi.org/10.1007/BF02783300

    Article  MathSciNet  MATH  Google Scholar 

  4. Alon, N., Spencer, J.H.: The Probabilistic Method, 4th edn. Wiley, Hoboken (2016)

    MATH  Google Scholar 

  5. Basavaraju, M., Bishnu, A., Francis, M., Pattanayak, D.: The linear arboricity conjecture for 3-degenerate graphs. arXiv:2007.06066 (2020)

  6. Basavaraju, M., Chandran, L.S.: Acyclic edge coloring of 2-degenerate graphs. J. Graph Theory 69(1), 1–27 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cygan, M., Hou, J.-F., Kowalik, Ł., Lužar, B., Jian-Liang, W.: A planar linear arboricity conjecture. J. Graph Theory 69(4), 403–425 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Diestel, R.: Graph Theory. GTM, vol. 173. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-53622-3

    Book  MATH  Google Scholar 

  9. Enomoto, H., Peroche, B.: The linear arboricity of some regular graphs. J. Graph Theory 8(2), 309–324 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ferber, A., Fox, J., Jain, V.: Towards the linear arboricity conjecture. J. Comb. Theory Ser. B 142, 56–79 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gabow, H., Westermann, H.: Forests, frames, and games: algorithms for matroid sums and applications. Algorithmica 7(5–6), 465–497 (1992). https://doi.org/10.1007/BF01758774

    Article  MathSciNet  MATH  Google Scholar 

  12. Guldan, F.: The linear arboricity of 10-regular graphs. Math. Slovaca 36(3), 225–228 (1986)

    MathSciNet  MATH  Google Scholar 

  13. Guldan, F.: Some results on linear arboricity. J. Graph Theory 10(4), 505–509 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Harary, F.: Covering and packing in graphs, I. Ann. New York Acad. Sci. 175(1), 198–205 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hsiao, D., Harary, F.: A formal system for information retrieval from files. Commun. ACM 13(2), 67–73 (1970)

    Article  MATH  Google Scholar 

  16. Peroche, B.: Complexité de l’arboricité linéaire d’un graphe. RAIRO-Oper. Res. 16(2), 125–129 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vizing, V.G.: On an estimate of the chromatic class of a \(p\)-graph. Diskret. Analiz 3, 25–30 (1964)

    MathSciNet  Google Scholar 

  18. Jian-Liang, W.: On the linear arboricity of planar graphs. J. Graph Theory 31(2), 129–134 (1999)

    Article  MathSciNet  Google Scholar 

  19. Jian-Liang, W., Yu-Wen, W.: The linear arboricity of planar graphs of maximum degree seven is four. J. Graph Theory 58(3), 210–220 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was partially supported by the fixed grant scheme SERB-MATRICS project number MTR/2019/000790.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew Francis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Basavaraju, M., Bishnu, A., Francis, M., Pattanayak, D. (2020). The Linear Arboricity Conjecture for 3-Degenerate Graphs. In: Adler, I., Müller, H. (eds) Graph-Theoretic Concepts in Computer Science. WG 2020. Lecture Notes in Computer Science(), vol 12301. Springer, Cham. https://doi.org/10.1007/978-3-030-60440-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60440-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60439-4

  • Online ISBN: 978-3-030-60440-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics