Nothing Special   »   [go: up one dir, main page]

Skip to main content

Finding Large Matchings in 1-Planar Graphs of Minimum Degree 3

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2020)

Abstract

A matching is a set of edges without common endpoint. It was recently shown that every 1-planar graph (i.e., a graph that can be drawn in the plane with at most one crossing per edge) that has minimum degree 3 has a matching of size at least \(\frac{n+12}{7}\), and this is tight for some graphs. The proof did not come with an algorithm to find the matching more efficiently than a general-purpose maximum-matching algorithm. In this paper, we give such an algorithm. More generally, we show that any matching that has no augmenting paths of length 9 or less has size at least \(\frac{n+12}{7}\) in a 1-planar graph with minimum degree 3.

F. Klute—This work was conducted while FK was a member of the “Algorithms and Complexity Group” at TU Wien.

Research of TB supported by NSERC. Research initiated while FK was visiting the University of Waterloo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In this paper, ‘minimum degree k’ stands for ‘minimum degree at least k’; of course the bounds also hold if all degrees are higher.

  2. 2.

    Our terminology follows the one in Edmonds’ famous blossom-algorithm [12].

References

  1. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41(1), 153–180 (1994). https://doi.org/10.1145/174644.174650

    Article  MathSciNet  MATH  Google Scholar 

  2. Bast, H., Mehlhorn, K., Schäfer, G., Tamaki, H.: Matching algorithms are fast in sparse random graphs. Theor. Comput. Syst. 39(1), 3–14 (2006). https://doi.org/10.1007/s00224-005-1254-y

    Article  MathSciNet  MATH  Google Scholar 

  3. Berge, C.: Graphs and Hypergraphs, 2nd edn. North-Holland (1976). Translated from Graphes et Hypergraphes, Dunod (1970)

    Google Scholar 

  4. Biedl, T., Bose, P., Demaine, E.D., Lubiw, A.: Efficient algorithms for Petersen’s matching theorem. J. Algorithms 38(1), 110–134 (2001). https://doi.org/10.1006/jagm.2000.1132

    Article  MathSciNet  MATH  Google Scholar 

  5. Biedl, T., Klute, F.: Finding large matchings in 1-planar graphs of minimum degree 3 (2020). CoRR 2002.11818. http://arxiv.org/abs/2002.11818

  6. Biedl, T., Wittnebel, J.: Matchings in 1-planar graphs with large minimum degree (2019). CoRR 1911.04603. http://arxiv.org/abs/1911.04603

  7. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976). https://doi.org/10.1016/S0022-0000(76)80045-1

    Article  MathSciNet  MATH  Google Scholar 

  8. Chiba, N., Nishizeki, T.: The Hamiltonian cycle problem is linear-time solvable for \(4\)-connected planar graphs. J. Algorithms 10(2), 187–211 (1989). https://doi.org/10.1016/0196-6774(89)90012-6

    Article  MathSciNet  MATH  Google Scholar 

  9. Cole, R., Ost, K., Schirra, S.: Edge-coloring bipartite multigraphs in \(O(E\log D)\) time. Combinatorica 21(1), 5–12 (2001). https://doi.org/10.1007/s004930170002

    Article  MathSciNet  MATH  Google Scholar 

  10. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM 52(6), 866–893 (2005). https://doi.org/10.1145/1101821.1101823

    Article  MathSciNet  MATH  Google Scholar 

  11. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  12. Edmonds, J.: Maximum matchings and a polyhedron with 0,1-vertices. J. Res. Natl. Bur. Stan. 69B, 125–130 (1965)

    Article  MathSciNet  Google Scholar 

  13. Franke, R., Rutter, I., Wagner, D.: Computing large matchings in planar graphs with fixed minimum degree. Theor. Comput. Sci. 412(32), 4092–4099 (2011). https://doi.org/10.1016/j.tcs.2010.06.012

    Article  MathSciNet  MATH  Google Scholar 

  14. Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few crossings per edge. Algorithmica 49(1), 1–11 (2007). https://doi.org/10.1007/s00453-007-0010-x

    Article  MathSciNet  MATH  Google Scholar 

  15. Hall, M., Jr.: An algorithm for distinct representatives. Am. Math. Mon. 63, 716–717 (1956)

    Google Scholar 

  16. Hopcroft, J.E., Karp, R.M.: An \(n^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2, 225–231 (1973). https://doi.org/10.1137/0202019

    Article  MathSciNet  MATH  Google Scholar 

  17. Hopcroft, J.E., Tarjan, R.E.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974). https://doi.org/10.1145/321850.321852

    Article  MathSciNet  MATH  Google Scholar 

  18. Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-planarity. Comput. Sci. Rev. 25, 49–67 (2017). https://doi.org/10.1016/j.cosrev.2017.06.002

    Article  MathSciNet  MATH  Google Scholar 

  19. Lovász, L., Plummer, M.D.: Matching Theory. Annals of Discrete Mathematics, p. 29. North-Holland Publishing Co., Amsterdam (1986)

    Google Scholar 

  20. Micali, S., Vazirani, V.V.: An \({O(\sqrt{|V|}|E|)}\) algoithm for finding maximum matching in general graphs. In: Proceedings of the 21st Annual Symposium on Foundations of Computer Science (FOCS 1980), pp. 17–27. IEEE Computer Society (1980). https://doi.org/10.1109/SFCS.1980.12

  21. Nishizeki, T., Baybars, I.: Lower bounds on the cardinality of the maximum matchings of planar graphs. Discrete Math. 28(3), 255–267 (1979). https://doi.org/10.1016/0012-365X(79)90133-X

    Article  MathSciNet  MATH  Google Scholar 

  22. Petersen, J.: Die Theorie der regulären graphs (The theory of regular graphs). Acta Math. 15, 193–220 (1891)

    Article  MathSciNet  Google Scholar 

  23. Schaefer, M.: Crossing Numbers of Graphs. CRC Press, Boca Raton (2017)

    Google Scholar 

  24. Tutte, W.T.: A theorem on planar graphs. Trans. Am. Math. Soc. 82, 99–116 (1956). https://doi.org/10.2307/1992980

    Article  MathSciNet  MATH  Google Scholar 

  25. Vazirani, V.V.: A simplification of the MV matching algorithm and its proof. CoRR, abs/1210.4594 (2012). http://arxiv.org/abs/1210.4594

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Klute .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biedl, T., Klute, F. (2020). Finding Large Matchings in 1-Planar Graphs of Minimum Degree 3. In: Adler, I., Müller, H. (eds) Graph-Theoretic Concepts in Computer Science. WG 2020. Lecture Notes in Computer Science(), vol 12301. Springer, Cham. https://doi.org/10.1007/978-3-030-60440-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60440-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60439-4

  • Online ISBN: 978-3-030-60440-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics