Abstract
In this paper, we carry out a review of the grey wolf, the firefly and the bat algorithms. We identify the concepts involved in these three metaphor-based algorithms and compare them to those proposed in the context of particle swarm optimization. We provide compelling evidence that the grey wolf, the firefly, and the bat algorithms are not novel, but a reiteration of ideas introduced first for particle swarm optimization and reintroduced years later using new natural metaphors. These three algorithms can therefore be added to the growing list of metaphor-based algorithms—to which already belong algorithms such as harmony search and intelligent water drops—that are nothing else than repetitions of old ideas hidden by the usage of new terminology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Although search is not an activity in the hunting phases of wolves, the authors explain it as “the divergence among wolves during hunting in order to find a fitter prey” [14, p. 50].
- 3.
Note that in the following we will use the shorter notation \(\varphi ^{\textit{\textbf{w}},\textit{\textbf{m}}}_t\) when the meaning is clear from the context.
- 4.
In this paper, we consider minimization problems; the obvious adaptation should be made in case of maximization problems.
- 5.
Due to the constraint that both conditions have to be met, it may be the case that \(\textit{\textbf{z}}^{i}_{t}\) is rejected even when its quality is higher than that of \(\textit{\textbf{g}}_{t}\).
- 6.
Note that, although in this paper we compared BA with PSO and SA, BA could also be interpreted as a variant of differential evolution (DE) [25]. This is because the probability \(\rho ^i_t\) and the \(\texttt {Accept}\) criterion in BA are used in the same way as the mutation probability and the acceptance between donor and trial vectors in DE [18].
References
Arumugam, M.S., Murthy, G.R., Rao, M., Loo, C.X.: A novel effective particle swarm optimization like algorithm via extrapolation technique. In: International Conference on Intelligent and Advanced Systems, pp. 516–521. IEEE (2007)
Camacho-Villalón, C.L., Dorigo, M., Stützle, T.: Why the Intelligent Water Drops Cannot Be Considered as a Novel Algorithm. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp. 302–314. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00533-7_24
Camacho-Villalón, C.L., Dorigo, M., Stützle, T.: The intelligent water drops algorithm: why it cannot be considered a novel algorithm. Swarm Intell. 13, 173–192 (2019). https://doi.org/10.1007/s11721-019-00165-y
Campelo, F.: Evolutionary computation bestiary. https://github.com/fcampelo/EC-Bestiary (2017). Accessed 22 Jan 2018
Clerc, M.: Standard particle swarm optimisation from 2006 to 2011. Open archive HAL hal-00764996, HAL (2011)
Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)
Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)
Kennedy, J.: Bare bones particle swarms. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium, SIS 2003 (Cat. No. 03EX706), pp. 80–87. IEEE (2003)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)
Kirkpatrick, S.: Optimization by simulated annealing: quantitative studies. J. Stat. Phys. 34(5–6), 975–986 (1984). https://doi.org/10.1007/BF01009452
Lones, M.A.: Metaheuristics in nature-inspired algorithms. In: Igel, C., Arnold, D.V. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2014. pp. 1419–1422. ACM Press, New York (2014)
Melvin, G., Dodd, T.J., Groß, R.: Why ‘GSA: a gravitational search algorithm’ is not genuinely based on the law of gravity. Natural Comput. 11(4), 719–720 (2012). https://doi.org/10.1007/s11047-012-9322-0
Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)
Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)
Peña, J.: Simple dynamic particle swarms without velocity. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 144–154. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87527-7_13
Peña, J.: Theoretical and empirical study of particle swarms with additive stochasticity and different recombination operators. In: Ryan, C. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2008, pp. 95–102. ACM Press, New York (2008)
Piotrowski, A.P., Napiorkowski, J.J., Rowinski, P.M.: How novel is the "novel" black hole optimization approach? Inf. Sci. 267, 191–200 (2014)
Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution. NCS. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-31306-0
Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8(3), 240–255 (2004)
Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart, Germany (1973)
Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Simpson, P.K., Haines, K., Zurada, J., Fogel, D. (eds.) Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, ICEC 1998, pp. 69–73. IEEE Press, Piscataway (1998)
Shi, Y., Eberhart, R.: Empirical study of particle swarm optimization. In: Proceedings of the 2009 Congress on Evolutionary Computation (CEC 2009), pp. 1945–1950. IEEE Press, Piscataway (2009)
Sörensen, K.: Metaheuristics–the metaphor exposed. Int. Trans. Oper. Res. 22(1), 3–18 (2015). https://doi.org/10.1111/itor.12001
Sörensen, K., Arnold, F., Palhazi Cuervo, D.: A critical analysis of the “improved Clarke and wright savings algorithm”. Int. Trans. Oper. Res. 26(1), 54–63 (2019)
Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997). https://doi.org/10.1023/A:1008202821328
Weyland, D.: A rigorous analysis of the harmony search algorithm: how the research community can be misled by a “novel” methodology. Int. J. Appl. Metaheuristic Comput. 12(2), 50–60 (2010)
Weyland, D.: A critical analysis of the harmony search algorithm: how not to solve Sudoku. Oper. Res. Pers. 2, 97–105 (2015)
Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04944-6_14
Yang, X.S.: A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization (NICSO 2010). In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Studies in Computational Intelligence, vol. 284, pp. 65–74. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12538-6_6
Zambrano-Bigiarin, M., Clerc, M., Rojas, R.: Standard particle swarm optimisation 2011 at cec-2013: a baseline for future pso improvements. In: Proceedings of the 2013 Congress on Evolutionary Computation (CEC 2013), pp. 2337–2344. IEEE Press, Piscataway (2013)
Acknowledgments
Christian Leonardo Camacho Villalón, Thomas Stützle and Marco Dorigo acknowledge support from the Belgian F.R.S.-FNRS, of which they are, respectively, research fellow and research directors.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Camacho Villalón, C.L., Stützle, T., Dorigo, M. (2020). Grey Wolf, Firefly and Bat Algorithms: Three Widespread Algorithms that Do Not Contain Any Novelty. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2020. Lecture Notes in Computer Science(), vol 12421. Springer, Cham. https://doi.org/10.1007/978-3-030-60376-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-60376-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60375-5
Online ISBN: 978-3-030-60376-2
eBook Packages: Computer ScienceComputer Science (R0)