Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-hop Reading Comprehension Incorporating Sentence-Based Reasoning

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2020)

Abstract

Multi-hop machine reading comprehension (MRC) requires models to mine and utilize relevant information from multiple documents to predict the answer to a semantically related question. Existing work resorts to either document-level or entity-level inference among relevant information, which can be too coarse or too subtle, resulting less accurate understanding of the texts. To mitigate the issue, this research proposes a sentence-based multi-hop reasoning approach named SMR. SMR starts with sentences of documents, and unites the question to establish several reasoning chains based on sentence-level representations. In addition, to resolve the complication of pronouns on sentence semantics, we concatenate two sentences, if necessary, to assist in constructing reasoning chains. The model then synthesizes the information existed in all the reasoning chains, and predicts a probability distribution for selecting the correct answer. In experiments, we evaluate SMR on two popular multi-hop MRC benchmark datasets - WikiHop and MedHop. The model achieves 68.3 and 62.9 in terms of accuracy, respectively, exhibiting a remarkable improvement over state-of-the-art option. Additionally, qualitative analysis also demonstrates the validity and interpretability of SMR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We are in the process of obtaining the results on the hidden test set.

References

  1. Nishida, K., et al.: Multi-style generative reading comprehension. ACL (1), 2273–2284 (2019)

    Google Scholar 

  2. Wang, C., Jiang, H.: Explicit utilization of general knowledge in machine reading comprehension. ACL (1), 2263–2272 (2019)

    Google Scholar 

  3. Jiang, Y., Joshi, N., Chen, Y.-C., Bansal, M.: Explore, propose, and assemble: an interpretable model for multi-hop reading comprehension. ACL (1), 2714–2725 (2019)

    Google Scholar 

  4. Kundu, S., Khot, T., Sabharwal, A., Clark, P.: Exploiting explicit paths for multi-hop reading comprehension. ACL (1), 2737–2747 (2019)

    Google Scholar 

  5. Tu, M., Wang, G., Huang, J., Tang, Y., He, X., Zhou, B.: Multi-hop reading comprehension across multiple documents by reasoning over heterogeneous graphs. ACL (1), 2704–2713 (2019)

    Google Scholar 

  6. Ding, M., Zhou, C., Chen, Q., Yang, H., Tang, J.: Cognitive graph for multi-hop reading comprehension at scale. ACL (1), 2694–2703 (2019)

    Google Scholar 

  7. Zhong, V., Xiong, C., Keskar, N.S., Socher, R.: Coarse-grain fine-grain coattention network for multi-evidence question answering. ICLR (Poster) (2019)

    Google Scholar 

  8. Welbl, J., Stenetorp, P., Riedel, S.: Constructing datasets for multi-hop reading comprehension across documents. TACL 6, 287–302 (2018)

    Article  Google Scholar 

  9. Yang, Z., et al.: HotpotQA: a dataset for diverse, explainable multi-hop question answering. EMNLP, pp. 2369–2380 (2018)

    Google Scholar 

  10. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: SQuAD: 100, 000+ questions for machine comprehension of text. EMNLP, pp. 2383–2392 (2016)

    Google Scholar 

  11. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. NAACL-HLT (1), 4171–4186 (2019)

    Google Scholar 

  12. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. EMNLP, 1532–1543 (2014)

    Google Scholar 

  13. De Cao, N., Aziz, W., Titov, I.: Question answering by reasoning across documents with graph convolutional networks. NAACL-HLT (1), 2306–2317 (2019)

    Google Scholar 

  14. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. EMNLP, pp. 1724–1734 (2014)

    Google Scholar 

  15. Bird, S., Loper, E.: NLTK: the natural language toolkit. ACL (Poster and Demonstration) (2004)

    Google Scholar 

  16. Peters, M.E., et al.: Deep contextualized word representations. NAACL-HLT, pp. 2227–2237 (2018)

    Google Scholar 

  17. Joshi, M., Choi, E., Weld, D.S., Zettlemoyer, L.: TriviaQA: a large scale distantly supervised challenge dataset for reading comprehension. ACL (1), pp. 1601–1611 (2017)

    Google Scholar 

  18. Onishi, T., Wang, H., Bansal, M., Gimpel, K., McAllester, D.A.: Who did what: a large-scale person-centered cloze dataset. EMNLP, pp. 2230–2235 (2016)

    Google Scholar 

  19. Hill, F., Bordes, A., Chopra, S., Weston, J.: The goldilocks principle: reading children’s books with explicit memory representations. ICLR (2016)

    Google Scholar 

  20. Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph networks. CoRR abs/1806.01261 (2018)

    Google Scholar 

  21. Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway Networks. CoRR abs/1505.00387 (2015)

    Google Scholar 

  22. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  23. Chandar, S., Ahn, S., Larochelle, H., Vincent, P., Tesauro, G., Bengio, Y.: Hierarchical Memory Networks. CoRR abs/1605.07427 (2016)

    Google Scholar 

  24. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. ICLR (2015)

    Google Scholar 

  25. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Seo, M., Kembhavi, A., Farhadi, A., Hajishirzi, H.: Bidirectional attention flow for machine comprehension. ICLR (2017)

    Google Scholar 

  27. Cao, Y., Fang, M., Tao, D.: BAG: bi-directional attention entity graph convolutional network for multi-hop reasoning question answering. NAACL-HLT (1), 357–362 (2019)

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by NSFC under grants Nos. 61872446, 61902417 and 71971212, and PNSF of Hunan under grant No. 2019JJ20024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huo, L., Ge, B., Zhao, X. (2020). Multi-hop Reading Comprehension Incorporating Sentence-Based Reasoning. In: Wang, X., Zhang, R., Lee, YK., Sun, L., Moon, YS. (eds) Web and Big Data. APWeb-WAIM 2020. Lecture Notes in Computer Science(), vol 12317. Springer, Cham. https://doi.org/10.1007/978-3-030-60259-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60259-8_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60258-1

  • Online ISBN: 978-3-030-60259-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics