Nothing Special   »   [go: up one dir, main page]

Skip to main content

LSimRank: Node Similarity in a Labeled Graph

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12317))

  • 1787 Accesses

Abstract

The notion of node similarity is useful in many real-world applications. Many existing similarity measurements such as SimRank and its variants have been proposed. Among these measurements, most capture the structural information of a graph only, and thus they are not suitable for graphs with additional label information. We propose a new similarity measurement called LSimRank which measures the similarities among nodes by using both the structural information and the label information of a graph. Extensive experiments on datasets verify that LSimRank is superior over SimRank and other variants on labeled graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    NDCG and precision are two commonly used metrics in top-k query problems. However, these two metrics cannot be used here, since they need the ground-truth rank of nodes which does not exist in our case.

References

  1. Konect datasets: The koblenz network collection. http://konect.uni-koblenz.de

  2. Technical report: LSimRank: Node similarity in a labeled graph. https://www.dropbox.com/sh/19il4hol726ltic/AABsMjX-28wJN4IlYArJS6yYa?dl=0

  3. Antonellis, I., Molina, H.G., Chang, C.C.: Simrank++: query rewriting through link analysis of the click graph. Proc. VLDB Endowment 1(1), 408–421 (2008)

    Article  Google Scholar 

  4. Arora, A., Sachan, M., Bhattacharya, A.: Mining statistically significant connected subgraphs in vertex labeled graphs. In: SIGMOD, pp. 1003–1014 (2014)

    Google Scholar 

  5. Chen, H.-H., Giles, C.L.: Ascos++: an asymmetric similarity measure for weighted networks to address the problem of simrank. ACM Trans. Knowl. Discov. Data (TKDD) 10(2), 15 (2015)

    Google Scholar 

  6. Conte, A., Ferraro, G., Grossi, R., Marino, A., Sadakane, K., Uno, T.: Node similarity with q-grams for real-world labeled networks. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1282–1291. ACM (2018)

    Google Scholar 

  7. Fogaras, D., Rácz, B.: Scaling link-based similarity search. In: Proceedings of the 14th International Conference on World Wide Web, pp. 641–650. ACM (2005)

    Google Scholar 

  8. Jeh, G., Widom, J.: Simrank: a measure of structural-context similarity. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 538–543. ACM (2002)

    Google Scholar 

  9. Jiang, M., Fu, A.W.-C., Wong, R.C.-W.: Reads: a random walk approach for efficient and accurate dynamic simrank. Proc. VLDB Endowment 10(9), 937–948 (2017)

    Article  Google Scholar 

  10. Jin, R., Lee, V.E., Hong, H.: Axiomatic ranking of network role similarity. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 922–930. ACM (2011)

    Google Scholar 

  11. Leskovec, J., Krevl, A.: Snap datasets: standford large network dataset collection (2016). http://snap.standford.edu/data

  12. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  13. Lin, D., et al.: An information-theoretic definition of similarity. In: Icml, vol. 98, pp. 296–304. Citeseer (1998)

    Google Scholar 

  14. Liu, Y., Zheng, B., He, X., Wei, Z., Xiao, X., Zheng, K., Lu, J.: Probesim: scalable single-source and top-k simrank computations on dynamic graphs. Proc. VLDB Endowment 11(1), 14–26 (2017)

    Article  Google Scholar 

  15. Rothe, S., Schütze, H.: Cosimrank: a flexible & efficient graph-theoretic similarity measure. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 1392–1402 (2014)

    Google Scholar 

  16. Shao, Y., Cui, B., Chen, L., Liu, M., Xie, X.: An efficient similarity search framework for simrank over large dynamic graphs. Proc. VLDB Endowment 8(8), 838–849 (2015)

    Article  Google Scholar 

  17. Shi, C., Kong, X., Huang, Y., Philip, S.Y., Wu, B.: Hetesim: a general framework for relevance measure in heterogeneous networks. IEEE Trans. Knowl. Data Eng. 26(10), 2479–2492 (2014)

    Article  Google Scholar 

  18. Song, J., Luo, X., Gao, J., Zhou, C., Wei, H., Uniwalk, J.X.Y.: Unidirectional random walk based scalable simrank computation over large graph. IEEE Trans. Knowl. Data Eng. 30(5), 992–1006 (2018)

    Article  Google Scholar 

  19. Spirin, N., Han, J.: Survey on web spam detection: principles and algorithms. ACM SIGKDD Explor. Newsletter 13(2), 50–64 (2012)

    Article  Google Scholar 

  20. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: Pathsim: meta path-based top-k similarity search in heterogeneous information networks. Proc. VLDB Endowment 4(11), 992–1003 (2011)

    Article  Google Scholar 

  21. Tian, B., Xiao, X.: Sling: a near-optimal index structure for simrank. In: Proceedings of the 2016 International Conference on Management of Data, pp. 1859–1874. ACM (2016)

    Google Scholar 

  22. Xiong, Y., Zhu, Y., Philip, S.Y.: Top-k similarity join in heterogeneous information networks. IEEE Trans. Knowl. Data Eng. 27(6), 1710–1723 (2014)

    Article  Google Scholar 

  23. Youngmann, B., Milo, T., Somech, A.: Boosting simrank with semantics. In: EDBT, pp. 37–48 (2019)

    Google Scholar 

  24. Yu, W., Lin, X., Zhang, W., Chang, L., Pei, J.: More is simpler: effectively and efficiently assessing node-pair similarities based on hyperlinks. Proc. VLDB Endowment 7(1), 13–24 (2013)

    Article  Google Scholar 

  25. Zhao, P., Han, J., Sun, Y.: P-rank: a comprehensive structural similarity measure over information networks. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 553–562. ACM (2009)

    Google Scholar 

  26. Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute similarities. Proc. VLDB Endowment 2(1), 718–729 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Y., Fu, A.WC., Long, C., Chen, Z. (2020). LSimRank: Node Similarity in a Labeled Graph. In: Wang, X., Zhang, R., Lee, YK., Sun, L., Moon, YS. (eds) Web and Big Data. APWeb-WAIM 2020. Lecture Notes in Computer Science(), vol 12317. Springer, Cham. https://doi.org/10.1007/978-3-030-60259-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60259-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60258-1

  • Online ISBN: 978-3-030-60259-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics