Nothing Special   »   [go: up one dir, main page]

Skip to main content

G-GCSN: Global Graph Convolution Shrinkage Network for Emotion Perception from Gait

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 Workshops (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12628))

Included in the following conference series:

Abstract

Recently, emotion recognition through gait, which is more difficult to imitate than other biological characteristics, has aroused extensive attention. Although some deep-learning studies have been conducted in this field, there are still two challenges. First, it is hard to extract the representational features of the gait from video effectively. Second, the input of body joints sequences has noise introduced during dataset collection and feature production. In this work, we propose a global link, which extends the existing skeleton graph (the natural link) to capture the overall state of gait based on spatial-temporal convolution. In addition, we use soft thresholding to reduce noise. The thresholds are learned automatically by a block called shrinkage block. Combined with the global link and shrinkage block, we further propose the global graph convolution shrinkage network (G-GCSN) to capture the emotion-related features. We validate the effectiveness of the proposed method on a public dataset (i.e., Emotion-Gait dataset). The proposed G-GCSN achieves improvements compared with state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, Y.D., et al.: Facial emotion recognition based on biorthogonal wavelet entropy, fuzzy support vector machine, and stratified cross validation. IEEE Access 4, 8375–8385 (2016)

    Article  Google Scholar 

  2. Mohammadpour, M., Khaliliardali, H., Hashemi, S.M.R., AlyanNezhadi, M.M.: Facial emotion recognition using deep convolutional networks. In: IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), pp. 0017–0021. IEEE (2017)

    Google Scholar 

  3. Zhao, J., Mao, X., Chen, L.: Speech emotion recognition using deep 1D & 2D CNN LSTM networks. Biomed. Sig. Process. Control 47, 312–323 (2019)

    Article  Google Scholar 

  4. Nicholson, J., Takahashi, K., Nakatsu, R.: Emotion recognition in speech using neural networks. Neural Comput. Appl. 9, 290–296 (2000)

    Article  Google Scholar 

  5. Kim, J., André, E.: Emotion recognition based on physiological changes in music listening. IEEE Trans. Pattern Anal. Mach. Intell. 30, 2067–2083 (2008)

    Article  Google Scholar 

  6. Kim, K.H., Bang, S.W., Kim, S.R.: Emotion recognition system using short-term monitoring of physiological signals. Med. Biol. Eng. Comput. 42, 419–427 (2004)

    Article  Google Scholar 

  7. Lin, Y.P., et al.: EEG-based emotion recognition in music listening. IEEE Trans. Biomed. Eng. 57, 1798–1806 (2010)

    Article  Google Scholar 

  8. Montepare, J.M., Goldstein, S.B., Clausen, A.: The identification of emotions from gait information. J. Nonverbal Behav. 11, 33–42 (1987)

    Article  Google Scholar 

  9. Halovic, S., Kroos, C.: Not all is noticed: kinematic cues of emotion-specific gait. Hum. Mov. Sci. 57, 478–488 (2018)

    Article  Google Scholar 

  10. Roether, C.L., Omlor, L., Christensen, A., Giese, M.A.: Critical features for the perception of emotion from gait. J. Vis. 9, 15–15 (2009)

    Article  Google Scholar 

  11. Bhattacharya, U., Mittal, T., Chandra, R., Randhavane, T., Bera, A., Manocha, D.: Step: spatial temporal graph convolutional networks for emotion perception from gaits. AAA I, 1342–1350 (2020)

    Google Scholar 

  12. Chao, H., He, Y., Zhang, J., Feng, J.: Gaitset: regarding gait as a set for cross-view gait recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, 33, pp. 8126–8133 (2019)

    Google Scholar 

  13. Kale, A., et al.: Identification of humans using gait. IEEE Trans. Image Process. 13, 1163–1173 (2004)

    Article  Google Scholar 

  14. Gage, J.R.: Gait analysis. an essential tool in the treatment of cerebral palsy. Clin. Orthopaedics Related Res. 126–134 (1993)

    Google Scholar 

  15. Jellinger, K., Armstrong, D., Zoghbi, H., Percy, A.: Neuropathology of rett syndrome. Acta Neuropathol. 76, 142–158 (1988)

    Article  Google Scholar 

  16. Jankovic, J.: Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79, 368–376 (2008)

    Article  Google Scholar 

  17. Li, M., Chen, S., Chen, X., Zhang, Y., Wang, Y., Tian, Q.: Actional-structural graph convolutional networks for skeleton-based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3595–3603 (2019)

    Google Scholar 

  18. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Skeleton-based action recognition with directed graph neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7912–7921 (2019)

    Google Scholar 

  19. Li, B., Zhu, C., Li, S., Zhu, T.: Identifying emotions from non-contact gaits information based on microsoft kinects. IEEE Trans. Affect. Comput. 9, 585–591 (2016)

    Article  Google Scholar 

  20. Quiroz, J.C., Geangu, E., Yong, M.H.: Emotion recognition using smart watch sensor data: mixed-design study. JMIR Mental Health 5, e10153 (2018)

    Article  Google Scholar 

  21. Ahmed, F., Sieu, B., Gavrilova, M.L.: Score and rank-level fusion for emotion recognition using genetic algorithm. In: 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), pp. 46–53. IEEE (2018)

    Google Scholar 

  22. Zhang, Z., Song, Y., Cui, L., Liu, X., Zhu, T.: Emotion recognition based on customized smart bracelet with built-in accelerometer. PeerJ 4, e2258 (2016)

    Article  Google Scholar 

  23. Venture, G., Kadone, H., Zhang, T., Grèzes, J., Berthoz, A., Hicheur, H.: Recognizing emotions conveyed by human gait. Int. J. Social Robot. 6, 621–632 (2014)

    Article  Google Scholar 

  24. Karg, M., Kühnlenz, K., Buss, M.: Recognition of affect based on gait patterns. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 40, 1050–1061 (2010)

    Google Scholar 

  25. Daoudi, M., Berretti, S., Pala, P., Delevoye, Y., Del Bimbo, A.: Emotion recognition by body movement representation on the manifold of symmetric positive definite matrices. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F. (eds.) ICIAP 2017. LNCS, vol. 10484, pp. 550–560. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68560-1_49

    Chapter  Google Scholar 

  26. Wang, W., Enescu, V., Sahli, H.: Adaptive real-time emotion recognition from body movements. ACM Trans. Interactive Intell. Syst. (TiiS) 5, 1–21 (2015)

    Google Scholar 

  27. Crenn, A., Khan, R.A., Meyer, A., Bouakaz, S.: Body expression recognition from animated 3D skeleton. In: 2016 International Conference on 3D Imaging (IC3D), pp. 1–7. IEEE (2016)

    Google Scholar 

  28. Randhavane, T., Bhattacharya, U., Kapsaskis, K., Gray, K., Bera, A., Manocha, D.: Identifying emotions from walking using affective and deep features. arXiv preprint arXiv:1906.11884 (2019)

  29. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. arXiv preprint arXiv:1801.07455 (2018)

  30. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Two-stream adaptive graph convolutional networks for skeleton-based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 12026–12035 (2019)

    Google Scholar 

  31. Liu, Z., Zhang, H., Chen, Z., Wang, Z., Ouyang, W.: Disentangling and unifying graph convolutions for skeleton-based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 143–152 (2020)

    Google Scholar 

  32. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017)

  33. Diao, Z., Wang, X., Zhang, D., Liu, Y., Xie, K., He, S.: Dynamic spatial-temporal graph convolutional neural networks for traffic forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 890–897 (2019)

    Google Scholar 

  34. Yang, J., Zheng, W.S., Yang, Q., Chen, Y.C., Tian, Q.: Spatial-temporal graph convolutional network for video-based person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3289–3299 (2020)

    Google Scholar 

  35. Zhao, M., Zhong, S., Fu, X., Tang, B., Pecht, M.: Deep residual shrinkage networks for fault diagnosis. IEEE Trans. Industr. Inf. 16, 4681–4690 (2019)

    Article  Google Scholar 

  36. Habibie, I., Holden, D., Schwarz, J., Yearsley, J., Komura, T.: A recurrent variational autoencoder for human motion synthesis. In: 28th British Machine Vision Conference (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by Major Scientific Research Project of Zhejiang Lab under the Grant No. 2018DG0ZX01, and in part by the Grant in Aid for Scientific Research from the Japanese Ministry for Education, Science, Culture and Sports (MEXT) under the Grant No. 20K21821.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lanfen Lin or Yen-Wei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhuang, Y., Lin, L., Tong, R., Liu, J., Iwamoto, Y., Chen, YW. (2021). G-GCSN: Global Graph Convolution Shrinkage Network for Emotion Perception from Gait. In: Sato, I., Han, B. (eds) Computer Vision – ACCV 2020 Workshops. ACCV 2020. Lecture Notes in Computer Science(), vol 12628. Springer, Cham. https://doi.org/10.1007/978-3-030-69756-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69756-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69755-6

  • Online ISBN: 978-3-030-69756-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics