Abstract
In this paper, we propose a novel training method to improve the precision of facial landmark localization. When a facial landmark localization method is applied to a facial video, the detected landmarks occasionally jitter, whereas the face apparently does not move. We hypothesize that there are two causes that induce the unstable detection: (1) small changes in input images and (2) inconsistent annotations. Corresponding to the causes, we propose (1) two loss terms to make a model robust to changes in the input images and (2) self-distillation training to reduce the effect of the annotation noise. We show that our method can improve the precision of facial landmark localization by reducing the variance using public facial landmark datasets, 300-W and 300-VW. We also show that our method can reduce jitter of predicted landmarks when applied to a video.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Koestinger, M., Wohlhart, P., Roth, P.M., Bischof, H.:Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 2144–2151. IEEE (2011)
Gilani, S.Z., Mian, A., Eastwood, P.: Deep, dense and accurate 3D face correspondence for generating population specific deformable models. Pattern Recogn. 69, 238–250 (2017)
Wang, K., Zhao, R., Ji, Q.: A hierarchical generative model for eye image synthesis and eye gaze estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 440–448 (2018)
Wang, Z., Yang, X., Cheng, K.T.: Accurate face alignment and adaptive patch selection for heart rate estimation from videos under realistic scenarios. PLoS ONE 13, e0197275 (2018)
Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23, 681–685 (2001)
Cao, X., Wei, Y., Wen, F., Sun, J.: Face alignment by explicit shape regression. Int. J. Comput. Vision 107, 177–190 (2014). https://doi.org/10.1007/s11263-013-0667-3
Ren, S., Cao, X., Wei, Y., Sun, J.: Face alignment at 3000 FPS via regressing local binary features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1685–1692 (2014)
Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3476–3483 (2013)
Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Facial landmark detection by deep multi-task learning. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 94–108. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_7
Merget, D., Rock, M., Rigoll, G.: Robust facial landmark detection via a fully-convolutional local-global context network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 781–790 (2018)
Liu, H., Lu, J., Feng, J., Zhou, J.: Two-stream transformer networks for video-based face alignment. IEEE Trans. Pattern Anal. Mach. Intell. 40, 2546–2554 (2017)
Sánchez-Lozano, E., Tzimiropoulos, G., Martinez, B., De la Torre, F., Valstar, M.: A functional regression approach to facial landmark tracking. IEEE Trans. Pattern Anal. Mach. Intell. 40, 2037–2050 (2017)
Belmonte, R., Ihaddadene, N., Tirilly, P., Bilasco, I.M., Djeraba, C.: Video-based face alignment with local motion modeling. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 2106–2115. IEEE (2019)
Guo, M., Lu, J., Zhou, J.: Dual-agent deep reinforcement learning for deformable face tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 783–799. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_47
Dong, X., Yu, S.I., Weng, X., Wei, S.E., Yang, Y., Sheikh, Y.: Supervision-by-registration: An unsupervised approach to improve the precision of facial landmark detectors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 360–368 (2018)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
Gao, P., Lu, K., Xue, J.: EfficientFAN: deep knowledge transfer for face alignment. In: Proceedings of the 2020 International Conference on Multimedia Retrieval, pp. 215–223 (2020)
Furlanello, T., Lipton, Z., Tschannen, M., Itti, L., Anandkumar, A.: Born-again neural networks. In: International Conference on Machine Learning, pp. 1602–1611 (2018)
Bagherinezhad, H., Horton, M., Rastegari, M., Farhadi, A.: Label refinery: improving imagenet classification through label progression. arXiv preprint arXiv:1805.02641 (2018)
Kato, N., Li, T., Nishino, K., Uchida, Y.: Improving multi-person pose estimation using label correction. arXiv preprint arXiv:1811.03331 (2018)
Honari, S., Molchanov, P., Tyree, S., Vincent, P., Pal, C., Kautz, J.: Improving landmark localization with semi-supervised learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1546–1555 (2018)
Sagonas, C., Antonakos, E., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild challenge: database and results. Image Vis. Comput. 47, 3–18 (2016)
Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild challenge: the first facial landmark localization challenge. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 397–403 (2013)
Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: A semi-automatic methodology for facial landmark annotation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 896–903 (2013)
Belhumeur, P.N., Jacobs, D.W., Kriegman, D.J., Kumar, N.: Localizing parts of faces using a consensus of exemplars. In: CVPR 2011, pp. 545–552. IEEE (2011)
Ramanan, D., Zhu, X.:Face detection, pose estimation, and landmark localization in the wild. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2879–2886. IEEE (2012)
Le, V., Brandt, J., Lin, Z., Bourdev, L., Huang, T.S.: Interactive facial feature localization. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 679–692. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_49
Messer, K., Matas, J., Kittler, J., Luettin, J., Maitre, G.: XM2VTSDB: the extended m2vts database. In: Second International Conference on Audio and Video-Based Biometric Person Authentication, vol. 964, pp. 965–966 (1999)
Zhu, S., Li, C., Change Loy, C., Tang, X.: Face alignment by coarse-to-fine shape searching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4998–5006 (2015)
Chrysos, G.G., Antonakos, E., Zafeiriou, S., Snape, P.: Offline deformable face tracking in arbitrary videos. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 1–9 (2015)
Shen, J., Zafeiriou, S., Chrysos, G.G., Kossaifi, J., Tzimiropoulos, G., Pantic, M.: The first facial landmark tracking in-the-wild challenge: benchmark and results. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 50–58 (2015)
Tzimiropoulos, G.: Project-out cascaded regression with an application to face alignment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3659–3667 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2D & 3D face alignment problem? (and a dataset of 230,000 3d facial landmarks). In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1021–1030 (2017)
Tokui, S., et al.: Chainer: a deep learning framework for accelerating the research cycle. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2002–2011. ACM (2019)
Tokui, S., Oono, K., Hido, S., Clayton, J.: Chainer: a next-generation open source framework for deep learning. In: Proceedings of Workshop on Machine Learning Systems (LearningSys) in The Twenty-ninth Annual Conference on Neural Information Processing Systems (NIPS) (2015)
Akiba, T., Fukuda, K., Suzuki, S.: ChainerMN: scalable distributed deep learning framework. In: Proceedings of Workshop on ML Systems in The Thirty-first Annual Conference on Neural Information Processing Systems (NIPS) (2017)
Dong, X., Yan, Y., Ouyang, W., Yang, Y.: Style aggregated network for facial landmark detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 379–388 (2018)
Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Nagae, S., Takeuchi, Y. (2021). Iterative Self-distillation for Precise Facial Landmark Localization. In: Sato, I., Han, B. (eds) Computer Vision – ACCV 2020 Workshops. ACCV 2020. Lecture Notes in Computer Science(), vol 12628. Springer, Cham. https://doi.org/10.1007/978-3-030-69756-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-69756-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69755-6
Online ISBN: 978-3-030-69756-3
eBook Packages: Computer ScienceComputer Science (R0)