Nothing Special   »   [go: up one dir, main page]

Skip to main content

Scheduling in Parallel Machines with Two Servers: The Restrictive Case

  • Conference paper
  • First Online:
Variable Neighborhood Search (ICVNS 2021)

Abstract

In this paper we study the Parallel machine scheduling problem with Two Servers in the Restrictive case (PTSR). Before its processing, the job must be loaded on a common loading server. After a machine completes processing one job, an unloading server is needed to remove the job from the machine. During the loading, respectively the unloading, operation, both the machine and the loading, respectively the unloading, server are occupied. The objective function involves the minimization of the makespan. A Mixed Integer Linear Programming (MILP) model is proposed for the solution of this difficult problem. Due to the NP-hardness of the problem, a Variable Neighborhood Search (VNS) algorithm is proposed. The proposed VNS algorithm is compared against a state-of-the-art solver using a randomly generated data set. The results indicate that, the obtained solutions computed in a short amount of CPU time are of high quality. Specifically, the VNS solution approach outperformed IBM CPLEX Optimizer for instances with 15 and 20 jobs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdekhodaee, A.H., Wirth, A.: Scheduling parallel machines with a single server: some solvable cases and heuristics. Comput. Oper. Res. 29(3), 295–315 (2002)

    Article  MathSciNet  Google Scholar 

  2. Bektur, G., Saraç, T.: A mathematical model and heuristic algorithms for an unrelated parallel machine scheduling problem with sequence-dependent setup times, machine eligibility restrictions and a common server. Comput. Oper. Res. 103, 46–63 (2019)

    Article  MathSciNet  Google Scholar 

  3. Benmansour, R., Sifaleras, A., Mladenović, N. (eds.): Variable neighborhood search. LNCS, vol. 12010. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44932-2

    Book  Google Scholar 

  4. Brucker, P., Dhaenens-Flipo, C., Knust, S., Kravchenko, S.A., Werner, F.: Complexity results for parallel machine problems with a single server. J. Sched. 5(6), 429–457 (2002)

    Article  MathSciNet  Google Scholar 

  5. Duarte, A., Mladenović, N., Sánchez-Oro, J., Todosijević, R.: Variable neighborhood descent. In: Martí, R., Panos, P., Resende, M. (eds.) Handbook of Heuristics, pp. 1–27. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-07153-4_9-1

    Chapter  Google Scholar 

  6. Elidrissi, A., Benbrahim, M., Benmansour, R., Duvivier, D.: Variable neighborhood search for identical parallel machine scheduling problem with a single server. In: Benmansour, R., Sifaleras, A., Mladenović, N. (eds.) ICVNS 2019. LNCS, vol. 12010, pp. 112–125. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44932-2_8

    Chapter  Google Scholar 

  7. Elidrissi, A., Benmansour, R., Benbrahim, M., Duvivier, D.: MIP formulations for identical parallel machine scheduling problem with single server. In: 2018 4th International Conference on Optimization and Applications (ICOA), pp. 1–6. IEEE (2018)

    Google Scholar 

  8. Glover, F.W., Kochenberger, G.A.: Handbook of Metaheuristics, vol. 57. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  9. Hansen, P., Mladenović, N., Pérez, J.A.M.: Variable neighbourhood search: methods and applications. Ann. Oper. Res. 175(1), 367–407 (2010). https://doi.org/10.1007/s10479-009-0657-6

    Article  MathSciNet  MATH  Google Scholar 

  10. Hasani, K., Kravchenko, S.A., Werner, F.: Block models for scheduling jobs on two parallel machines with a single server. Comput. Oper. Res. 41, 94–97 (2014)

    Article  MathSciNet  Google Scholar 

  11. Jiang, Y., Zhang, Q., Hu, J., Dong, J., Ji, M.: Single-server parallel-machine scheduling with loading and unloading times. J. Comb. Optim. 30(2), 201–213 (2014). https://doi.org/10.1007/s10878-014-9727-z

    Article  MathSciNet  MATH  Google Scholar 

  12. Kim, M.Y., Lee, Y.H.: MIP models and hybrid algorithm for minimizing the makespan of parallel machines scheduling problem with a single server. Comput. Oper. Res. 39(11), 2457–2468 (2012)

    Article  MathSciNet  Google Scholar 

  13. Liu, G.S., Li, J.J., Yang, H.D., Huang, G.Q.: Approximate and branch-and-bound algorithms for the parallel machine scheduling problem with a single server. J. Oper. Res. Soc. 70(9), 1554–1570 (2019)

    Article  Google Scholar 

  14. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)

    Article  MathSciNet  Google Scholar 

  15. Ou, J., Qi, X., Lee, C.Y.: Parallel machine scheduling with multiple unloading servers. J. Sched. 13(3), 213–226 (2010). https://doi.org/10.1007/s10951-009-0104-1

    Article  MathSciNet  MATH  Google Scholar 

  16. Sifaleras, A., Salhi, S., Brimberg, J. (eds.): Variable Neighborhood Search. LNCS, vol. 11328. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15843-9

    Book  Google Scholar 

  17. Torjai, L., Kruzslicz, F.: Mixed integer programming formulations for the biomass truck scheduling problem. CEJOR 24(3), 731–745 (2016). https://doi.org/10.1007/s10100-015-0395-6

    Article  MathSciNet  MATH  Google Scholar 

  18. Werner, F., Kravchenko, S.A.: Scheduling with multiple servers. Autom. Remote Control 71(10), 2109–2121 (2010). https://doi.org/10.1134/S0005117910100103

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Sifaleras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benmansour, R., Sifaleras, A. (2021). Scheduling in Parallel Machines with Two Servers: The Restrictive Case. In: Mladenovic, N., Sleptchenko, A., Sifaleras, A., Omar, M. (eds) Variable Neighborhood Search. ICVNS 2021. Lecture Notes in Computer Science(), vol 12559. Springer, Cham. https://doi.org/10.1007/978-3-030-69625-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69625-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69624-5

  • Online ISBN: 978-3-030-69625-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics