Abstract
Gaze is the essential manifestation of human attention. In recent years, a series of work has achieved high accuracy in gaze estimation. However, the inter-personal difference limits the reduction of the subject-independent gaze estimation error. This paper proposes an unsupervised method for domain adaptation gaze estimation to eliminate the impact of inter-personal diversity. In domain adaption, we design an embedding representation with prediction consistency to ensure that linear relationships between gaze directions in different domains remain consistent on gaze space and embedding space. Specifically, we employ source gaze to form a locally linear representation in the gaze space for each target domain prediction. Then the same linear combinations are applied in the embedding space to generate hypothesis embedding for the target domain sample, remaining prediction consistency. The deviation between the target and source domain is reduced by approximating the predicted and hypothesis embedding for the target domain sample. Guided by the proposed strategy, we design Domain Adaptation Gaze Estimation Network(DAGEN), which learns embedding with prediction consistency and achieves state-of-the-art results on both the MPIIGaze and the EYEDIAP datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Fridman, L., Reimer, B., Mehler, B., Freeman, W.T.: Cognitive load estimation in the wild. In: CHI, p. 652 (2018)
Konrad, R., Angelopoulos, A., Wetzstein, G.: Gaze-contingent ocular parallax rendering for virtual reality. ACM Trans. Graph. 39, 10:1–10:12 (2020)
Vicente, F., Huang, Z., Xiong, X., la Torre, F.D., Zhang, W., Levi, D.: Driver gaze tracking and eyes off the road detection system. IEEE Trans. Intell. Transp. Syst. 16, 2014–2027 (2015)
Kassner, M., Patera, W., Bulling, A.: Pupil: an open source platform for pervasive eye tracking and mobile gaze-based interaction. In: UbiComp Adjunct, pp. 1151–1160 (2014)
Sugano, Y., Matsushita, Y., Sato, Y.: Learning-by-synthesis for appearance-based 3D gaze estimation. In: CVPR, pp. 1821–1828 (2014)
Mora, K.A.F., Monay, F., Odobez, J.: EYEDIAP: a database for the development and evaluation of gaze estimation algorithms from RGB and RGB-D cameras. In: ETRA, pp. 255–258 (2014)
Zhang, X., Sugano, Y., Fritz, M., Bulling, A.: Appearance-based gaze estimation in the wild. In: CVPR, pp. 4511–4520 (2015)
Fischer, T., Chang, H.J., Demiris, Y.: RT-GENE: real-time eye gaze estimation in natural environments. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 339–357. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_21
Kellnhofer, P., Recasens, A., Stent, S., Matusik, W., Torralba, A.: Gaze360: physically unconstrained gaze estimation in the wild. In: ICCV, pp. 6911–6920 (2019)
Zhang, X., Sugano, Y., Fritz, M., Bulling, A.: MPIIGaze: real-world dataset and deep appearance-based gaze estimation. IEEE Trans. Pattern Anal. Mach. Intell. 41, 162–175 (2019)
Xiong, Y., Kim, H.J., Singh, V.: Mixed effects neural networks (MeNets) with applications to gaze estimation. In: CVPR, 7743–7752 (2019)
Liu, G., Yu, Y., Mora, K.A.F., Odobez, J.: A differential approach for gaze estimation with calibration. In: BMVC, p. 235 (2018)
Park, S., Mello, S.D., Molchanov, P., Iqbal, U., Hilliges, O., Kautz, J.: Few-shot adaptive gaze estimation. In: ICCV, pp. 9367–9376 (2019)
Roweis, T.S., Saul, K.L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)
Hansen, D.W., Ji, Q.: In the eye of the beholder: a survey of models for eyes and gaze. IEEE Trans. Pattern Anal. Mach. Intell. 32, 478–500 (2010)
Morimoto, C.H., Amir, A., Flickner, M.: Detecting eye position and gaze from a single camera and 2 light sources. In: ICPR, no. 4, pp. 314–317 (2002)
Yoo, D.H., Chung, M.J.: A novel non-intrusive eye gaze estimation using cross-ratio under large head motion. Comput. Vis. Image Underst. 98, 25–51 (2005)
Krafka, K., et al.: Eye tracking for everyone. In: CVPR, pp. 2176–2184 (2016)
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)
Zhang, X., Sugano, Y., Fritz, M., Bulling, A.: It’s written all over your face: full-face appearance-based gaze estimation. In: CVPR Workshops, pp. 2299–2308 (2017)
Chen, Z., Shi, B.E.: Appearance-based gaze estimation using dilated-convolutions. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11366, pp. 309–324. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20876-9_20
Palmero, C., Selva, J., Bagheri, M.A., Escalera, S.: Recurrent CNN for 3D gaze estimation using appearance and shape cues. In: BMVC, p. 251 (2018)
Cheng, Y., Huang, S., Wang, F., Qian, C., Lu, F.: A coarse-to-fine adaptive network for appearance-based gaze estimation. In: AAAI, pp. 10623–10630 (2020)
Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR, pp. 2962–2971 (2017)
Wang, J., Feng, W., Chen, Y., Yu, H., Huang, M., Yu, P.S.: Visual domain adaptation with manifold embedded distribution alignment. In: ACM Multimedia, pp. 402–410 (2018)
Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. ICML, vol. 37, pp. 97–105 (2015)
Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: ICML, vol. 70, pp. 2208–2217 (2017)
Kang, G., Jiang, L., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network for unsupervised domain adaptation. In: CVPR, pp. 4893–4902 (2019)
Yu, Y., Liu, G., Odobez, J.: Improving few-shot user-specific gaze adaptation via gaze redirection synthesis. In: CVPR, pp. 11937–11946 (2019)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1106–1114 (2012)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Zhang, X., Sugano, Y., Bulling, A.: Revisiting data normalization for appearance-based gaze estimation. ETRA, pp. 12:1–12:9 (2018)
Acknowledgement
This work was supported by the National Key R&D Program of China (2016YFB 1001001), the National Natural Science Foundation of China (61976170, 91648121, 61573280), and Tencent Robotics X Lab Rhino-Bird Joint Research Program (201902, 201903). (Portions of) the research in this paper used the EYEDIAP dataset made available by the Idiap Research Institute, Martigny, Switzerland.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Guo, Z., Yuan, Z., Zhang, C., Chi, W., Ling, Y., Zhang, S. (2021). Domain Adaptation Gaze Estimation by Embedding with Prediction Consistency. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12626. Springer, Cham. https://doi.org/10.1007/978-3-030-69541-5_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-69541-5_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69540-8
Online ISBN: 978-3-030-69541-5
eBook Packages: Computer ScienceComputer Science (R0)