Abstract
Full attention, which generates an attention value per element of the input feature maps, has been successfully demonstrated to be beneficial in visual tasks. In this work, we propose a fully attentional network, termed channel recurrent attention network, for the task of video pedestrian retrieval. The main attention unit, channel recurrent attention, identifies attention maps at the frame level by jointly leveraging spatial and channel patterns via a recurrent neural network. This channel recurrent attention is designed to build a global receptive field by recurrently receiving and learning the spatial vectors. Then, a set aggregation cell is employed to generate a compact video representation. Empirical experimental results demonstrate the superior performance of the proposed deep network, outperforming current state-of-the-art results across standard video person retrieval benchmarks, and a thorough ablation study shows the effectiveness of the proposed units.
P. Ji—Work done while at NEC Laboratories America.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For the remainder of this paper, we shall use the terms “pedestrian retrieval” and “person re-identification” interchangeably.
References
Zheng, L., Yang, Y., Hauptmann, A.G.: Person re-identification: Past, present and future (2016) arXiv:1610.02984 [cs.CV]
Suh, Y., Wang, J., Tang, S., Mei, T., Mu Lee, K.: Part-aligned bilinear representations for person re-identification. In: ECCV (2018)
Li, W., Zhu, X., Gong, S.: Harmonious attention network for person re-identification. In: CVPR (2018)
Zhou, J., Roy, S.K., Fang, P., Harandi, M., Petersson, L.: Cross-correlated attention networks for person re-identification. In: Image and Vision Computing (2020)
Wang, C., Zhang, Q., Huang, C., Liu, W., Wang, X.: Mancs: a multi-task attentional network with curriculum sampling for person re-identification. In: ECCV (2018)
Fang, P., Zhou, J., Roy, S.K., Petersson, L., Harandi, M.: Bilinear attention networks for person retrieval. In: ICCV (2019)
Chen, B., Deng, W., Hu, J.: Mixed high-order attention network for person re-identification. In: ICCV (2019)
Subramaniam, A., Nambiar, A., Mittal, A.: Co-segmentation inspired attention networks for video-based person re-identification. In: ICCV (2019)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)
Woo, S., Park, J., Lee, J.Y., So Kweon, I.: Cbam: convolutional block attention module. In: ECCV (2018)
Wang, X., Girshick, Gupta, A., He, K.: Non-local neural networks. In: CVPR (2017)
Fu, J., et al.: Dual attention network for scene segmentation. In: CVPR (2019)
Li, W., Jafari, O.H., Rother, C.: Deep object co-segmentation. In: ACCV (2018)
Wang, F., et al.: Residual attention network for image classification. In: CVPR (2017)
Hjelm, R.D., et al.: Learning deep representations by mutual information estimation and maximization. In: ICLR (2019)
Gong, Shaogang., Cristani, Marco., Yan, Shuicheng, Loy, Chen Change (eds.): Person Re-Identification. ACVPR. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6296-4
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature (2015)
Yi, D., Lei, Z., Li, S.Z.: Deep metric learning for person re-identification. In: ICPR (2014)
Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a “siamese” time delay neural network. In: NeurIPS (1993)
Ahmed, E., Jones, M., Marks, T.K.: An improved deep learning architecture for person re-identification. In: CVPR (2015)
Wu, S., Chen, Y.C., Li, X., Wu, A.C., You, J.J., Zheng, W.S.: An enhanced deep feature representation for person re-identification. In: WACV (2016)
Gao, J., Nevatia, R.: Revisiting temporal modeling for video-based person ReID. arXiv:1805.02104 (2018)
McLaughlin, N., Martinez del Rincon, J., Miller, P.: Recurrent convolutional network for video-based person re-identification. In: CVPR (2016)
Liu, H., Feng, J., Jiang, J., Yan, S.: End-to-end comparative attention networks for person re-identification (2016) arXiv:1606.04404 [cs.CV]
Liu, X., et al.: Hydraplus-net: attentive deep features for pedestrian analysis. In: ICCV (2017)
Bai, X., Yang, M., Huang, T., Dou, Z., Yu, R., Xu, Y.: Deep-Person: learing discriminative deep features for person re-identification. Pattern Recognition (2020)
Yan, Y., Ni, B., Song, Z., Ma, C., Yan, Y., Yang, X.: Person re-identification via recurrent feature aggregation. In: ECCV (2016)
Zhao, B., Wu, X., Feng, J., Peng, Q., Yan, S.: Diversified visual attention networks for fine-grained object classification. In: TMM (2017)
Paszke, A., et al.: Automatic differentiation in pytorch. In: NeurIPS (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. In: IJCV (2015)
Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv:1412.6980 (2014)
Zhao, Y., Shen, X., Jin, Z., Lu, H., Hua, X.S.: Attribute-driven feature disentangling and temporal aggregation for video person re-identification. In: CVPR (2019)
Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. arXiv:1708.04896 (2017)
Hirzer, M., Beleznai, C., Roth, P.M., Bischof, H.: Person re-identification by descriptive and discriminative classification. In: Image Analysis (2011)
Wang, T., Gong, S., Zhu, X., Wang, S.: Person re-identification by discriminative selection in video ranking. In: TPAMI (2016)
Zheng, L., Bie, Z., Sun, Y., Wang, J., Su, C., Wang, S., Tian, Q.: Mars: A video benchmark for large-scale person re-identification. In: ECCV (2016)
Wu, Y., Lin, Y., Dong, X., Yan, Y., Ouyang, W., Yang, Y.: Exploit the unknown gradually: One-shot video-based person re-identification by stepwise learning. In: CVPR (2018)
Dehghan, A., Assari, S.M., Shah, M.: Gmmcp tracker: globally optimal generalized maximum multi clique problem for multiple object tracking. In: CVPR (2015)
Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. In: TPAMI (2010)
Li, D., Chen, X., Zhang, Z., Huang, K.: Learning deep context-aware features over body and latent parts for person re-identification. In: CVPR (2017)
Zhou, Z., Huang, Y., Wang, W., Wang, L., Tan, T.: See the forest for the trees: joint spatial and temporal recurrent neural networks for video-based person re-identification. In: CVPR (2017)
Chen, D., Li, H., Xiao, T., Yi, S., Wang, X.: Video person re-identification with competitive snippet-similarity aggregation and co-attentive snippet embedding. In: CVPR (2018)
Liu, Y., Junjie, Y., Ouyang, W.: Quality aware network for set to set recognition. In: CVPR (2017)
Li, S., Bak, S., Carr, P., Wang, X.: Diversity regularized spatiotemporal attention for video-based person re-identification. In: CVPR (2018)
Zhang, R., et al.: Scan: self-and-collaborative attention network for video person re-identification (2018) arXiv:1807.05688 [cs.CV]
Liu, Y., Yuan, Z., Zhou, W., Li, H.: Spatial and temporal mutual promotion for video-based person re-identification. In: AAAI (2019)
Wu, G., Zhu, X., Gong, S.: Spatio-temporal associative representation for video person re-identification. In: BMVC (2019)
Fu, Y., Wang, X., Wei, Y., Huang, T.: STA: spatial-temporal attention for large-scale video-based person re-identification. In: AAAI (2019)
Hou, R., Ma, B., Chang, H., Gu, X., Shan, S., Chen, X.: VRSTC: occlusion-free video person re-identification. In: CVPR (2019)
Li, J., Wang, J., Tian, Q., Gao, W., Zhang, S.: Global-local temporal representation for video person re-identification. In: ICCV (2019)
Li, W., Zhao, R., Wang, X.: Human reidentification with transferred metric learning. In: ACCV (2012)
Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures and a data set for multi-target, multi-camera tracking. In: ECCVworkshop on Benchmarking Multi-Target Tracking (2016)
Zhao, L., Li, X., Zhuang, Y., Wang, J.: Deeply-learned part-aligned representations for person re-identification. In: ICCV (2017)
Zhao, H., et al.: Spindle net: person re-identification with human body region guided feature decomposition and fusion. In: CVPR (2017)
Zhou, K., Yang, Y., Cavallaro, A., Xiang, T.: Learning generalisable omni-scale representations for person re-identification. arXiv:1910.06827v2 (2019)
Chen, T., et al.: Abd-net: attentive but diverse person re-identification. In: ICCV (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Fang, P., Ji, P., Zhou, J., Petersson, L., Harandi, M. (2021). Channel Recurrent Attention Networks for Video Pedestrian Retrieval. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12627. Springer, Cham. https://doi.org/10.1007/978-3-030-69544-6_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-69544-6_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69543-9
Online ISBN: 978-3-030-69544-6
eBook Packages: Computer ScienceComputer Science (R0)