Nothing Special   »   [go: up one dir, main page]

Skip to main content

Channel Recurrent Attention Networks for Video Pedestrian Retrieval

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Abstract

Full attention, which generates an attention value per element of the input feature maps, has been successfully demonstrated to be beneficial in visual tasks. In this work, we propose a fully attentional network, termed channel recurrent attention network, for the task of video pedestrian retrieval. The main attention unit, channel recurrent attention, identifies attention maps at the frame level by jointly leveraging spatial and channel patterns via a recurrent neural network. This channel recurrent attention is designed to build a global receptive field by recurrently receiving and learning the spatial vectors. Then, a set aggregation cell is employed to generate a compact video representation. Empirical experimental results demonstrate the superior performance of the proposed deep network, outperforming current state-of-the-art results across standard video person retrieval benchmarks, and a thorough ablation study shows the effectiveness of the proposed units.

P. Ji—Work done while at NEC Laboratories America.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For the remainder of this paper, we shall use the terms “pedestrian retrieval” and “person re-identification” interchangeably.

References

  1. Zheng, L., Yang, Y., Hauptmann, A.G.: Person re-identification: Past, present and future (2016) arXiv:1610.02984 [cs.CV]

  2. Suh, Y., Wang, J., Tang, S., Mei, T., Mu Lee, K.: Part-aligned bilinear representations for person re-identification. In: ECCV (2018)

    Google Scholar 

  3. Li, W., Zhu, X., Gong, S.: Harmonious attention network for person re-identification. In: CVPR (2018)

    Google Scholar 

  4. Zhou, J., Roy, S.K., Fang, P., Harandi, M., Petersson, L.: Cross-correlated attention networks for person re-identification. In: Image and Vision Computing (2020)

    Google Scholar 

  5. Wang, C., Zhang, Q., Huang, C., Liu, W., Wang, X.: Mancs: a multi-task attentional network with curriculum sampling for person re-identification. In: ECCV (2018)

    Google Scholar 

  6. Fang, P., Zhou, J., Roy, S.K., Petersson, L., Harandi, M.: Bilinear attention networks for person retrieval. In: ICCV (2019)

    Google Scholar 

  7. Chen, B., Deng, W., Hu, J.: Mixed high-order attention network for person re-identification. In: ICCV (2019)

    Google Scholar 

  8. Subramaniam, A., Nambiar, A., Mittal, A.: Co-segmentation inspired attention networks for video-based person re-identification. In: ICCV (2019)

    Google Scholar 

  9. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)

    Google Scholar 

  10. Woo, S., Park, J., Lee, J.Y., So Kweon, I.: Cbam: convolutional block attention module. In: ECCV (2018)

    Google Scholar 

  11. Wang, X., Girshick, Gupta, A., He, K.: Non-local neural networks. In: CVPR (2017)

    Google Scholar 

  12. Fu, J., et al.: Dual attention network for scene segmentation. In: CVPR (2019)

    Google Scholar 

  13. Li, W., Jafari, O.H., Rother, C.: Deep object co-segmentation. In: ACCV (2018)

    Google Scholar 

  14. Wang, F., et al.: Residual attention network for image classification. In: CVPR (2017)

    Google Scholar 

  15. Hjelm, R.D., et al.: Learning deep representations by mutual information estimation and maximization. In: ICLR (2019)

    Google Scholar 

  16. Gong, Shaogang., Cristani, Marco., Yan, Shuicheng, Loy, Chen Change (eds.): Person Re-Identification. ACVPR. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6296-4

    Book  Google Scholar 

  17. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature (2015)

    Google Scholar 

  18. Yi, D., Lei, Z., Li, S.Z.: Deep metric learning for person re-identification. In: ICPR (2014)

    Google Scholar 

  19. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a “siamese” time delay neural network. In: NeurIPS (1993)

    Google Scholar 

  20. Ahmed, E., Jones, M., Marks, T.K.: An improved deep learning architecture for person re-identification. In: CVPR (2015)

    Google Scholar 

  21. Wu, S., Chen, Y.C., Li, X., Wu, A.C., You, J.J., Zheng, W.S.: An enhanced deep feature representation for person re-identification. In: WACV (2016)

    Google Scholar 

  22. Gao, J., Nevatia, R.: Revisiting temporal modeling for video-based person ReID. arXiv:1805.02104 (2018)

  23. McLaughlin, N., Martinez del Rincon, J., Miller, P.: Recurrent convolutional network for video-based person re-identification. In: CVPR (2016)

    Google Scholar 

  24. Liu, H., Feng, J., Jiang, J., Yan, S.: End-to-end comparative attention networks for person re-identification (2016) arXiv:1606.04404 [cs.CV]

  25. Liu, X., et al.: Hydraplus-net: attentive deep features for pedestrian analysis. In: ICCV (2017)

    Google Scholar 

  26. Bai, X., Yang, M., Huang, T., Dou, Z., Yu, R., Xu, Y.: Deep-Person: learing discriminative deep features for person re-identification. Pattern Recognition (2020)

    Google Scholar 

  27. Yan, Y., Ni, B., Song, Z., Ma, C., Yan, Y., Yang, X.: Person re-identification via recurrent feature aggregation. In: ECCV (2016)

    Google Scholar 

  28. Zhao, B., Wu, X., Feng, J., Peng, Q., Yan, S.: Diversified visual attention networks for fine-grained object classification. In: TMM (2017)

    Google Scholar 

  29. Paszke, A., et al.: Automatic differentiation in pytorch. In: NeurIPS (2017)

    Google Scholar 

  30. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  31. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. In: IJCV (2015)

    Google Scholar 

  32. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv:1412.6980 (2014)

  33. Zhao, Y., Shen, X., Jin, Z., Lu, H., Hua, X.S.: Attribute-driven feature disentangling and temporal aggregation for video person re-identification. In: CVPR (2019)

    Google Scholar 

  34. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. arXiv:1708.04896 (2017)

  35. Hirzer, M., Beleznai, C., Roth, P.M., Bischof, H.: Person re-identification by descriptive and discriminative classification. In: Image Analysis (2011)

    Google Scholar 

  36. Wang, T., Gong, S., Zhu, X., Wang, S.: Person re-identification by discriminative selection in video ranking. In: TPAMI (2016)

    Google Scholar 

  37. Zheng, L., Bie, Z., Sun, Y., Wang, J., Su, C., Wang, S., Tian, Q.: Mars: A video benchmark for large-scale person re-identification. In: ECCV (2016)

    Google Scholar 

  38. Wu, Y., Lin, Y., Dong, X., Yan, Y., Ouyang, W., Yang, Y.: Exploit the unknown gradually: One-shot video-based person re-identification by stepwise learning. In: CVPR (2018)

    Google Scholar 

  39. Dehghan, A., Assari, S.M., Shah, M.: Gmmcp tracker: globally optimal generalized maximum multi clique problem for multiple object tracking. In: CVPR (2015)

    Google Scholar 

  40. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. In: TPAMI (2010)

    Google Scholar 

  41. Li, D., Chen, X., Zhang, Z., Huang, K.: Learning deep context-aware features over body and latent parts for person re-identification. In: CVPR (2017)

    Google Scholar 

  42. Zhou, Z., Huang, Y., Wang, W., Wang, L., Tan, T.: See the forest for the trees: joint spatial and temporal recurrent neural networks for video-based person re-identification. In: CVPR (2017)

    Google Scholar 

  43. Chen, D., Li, H., Xiao, T., Yi, S., Wang, X.: Video person re-identification with competitive snippet-similarity aggregation and co-attentive snippet embedding. In: CVPR (2018)

    Google Scholar 

  44. Liu, Y., Junjie, Y., Ouyang, W.: Quality aware network for set to set recognition. In: CVPR (2017)

    Google Scholar 

  45. Li, S., Bak, S., Carr, P., Wang, X.: Diversity regularized spatiotemporal attention for video-based person re-identification. In: CVPR (2018)

    Google Scholar 

  46. Zhang, R., et al.: Scan: self-and-collaborative attention network for video person re-identification (2018) arXiv:1807.05688 [cs.CV]

  47. Liu, Y., Yuan, Z., Zhou, W., Li, H.: Spatial and temporal mutual promotion for video-based person re-identification. In: AAAI (2019)

    Google Scholar 

  48. Wu, G., Zhu, X., Gong, S.: Spatio-temporal associative representation for video person re-identification. In: BMVC (2019)

    Google Scholar 

  49. Fu, Y., Wang, X., Wei, Y., Huang, T.: STA: spatial-temporal attention for large-scale video-based person re-identification. In: AAAI (2019)

    Google Scholar 

  50. Hou, R., Ma, B., Chang, H., Gu, X., Shan, S., Chen, X.: VRSTC: occlusion-free video person re-identification. In: CVPR (2019)

    Google Scholar 

  51. Li, J., Wang, J., Tian, Q., Gao, W., Zhang, S.: Global-local temporal representation for video person re-identification. In: ICCV (2019)

    Google Scholar 

  52. Li, W., Zhao, R., Wang, X.: Human reidentification with transferred metric learning. In: ACCV (2012)

    Google Scholar 

  53. Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures and a data set for multi-target, multi-camera tracking. In: ECCVworkshop on Benchmarking Multi-Target Tracking (2016)

    Google Scholar 

  54. Zhao, L., Li, X., Zhuang, Y., Wang, J.: Deeply-learned part-aligned representations for person re-identification. In: ICCV (2017)

    Google Scholar 

  55. Zhao, H., et al.: Spindle net: person re-identification with human body region guided feature decomposition and fusion. In: CVPR (2017)

    Google Scholar 

  56. Zhou, K., Yang, Y., Cavallaro, A., Xiang, T.: Learning generalisable omni-scale representations for person re-identification. arXiv:1910.06827v2 (2019)

  57. Chen, T., et al.: Abd-net: attentive but diverse person re-identification. In: ICCV (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Fang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2345 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fang, P., Ji, P., Zhou, J., Petersson, L., Harandi, M. (2021). Channel Recurrent Attention Networks for Video Pedestrian Retrieval. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12627. Springer, Cham. https://doi.org/10.1007/978-3-030-69544-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69544-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69543-9

  • Online ISBN: 978-3-030-69544-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics