Nothing Special   »   [go: up one dir, main page]

Skip to main content

MagGAN: High-Resolution Face Attribute Editing with Mask-Guided Generative Adversarial Network

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12625))

Included in the following conference series:

Abstract

We present Mask-guided Generative Adversarial Network (MagGAN) for high-resolution face attribute editing, in which semantic facial masks from a pre-trained face parser are used to guide the fine-grained image editing process. With the introduction of a mask-guided reconstruction loss, MagGAN learns to only edit the facial parts that are relevant to the desired attribute changes, while preserving the attribute-irrelevant regions (e.g., hat, scarf for modification ‘To Bald’). Further, a novel mask-guided conditioning strategy is introduced to incorporate the influence region of each attribute change into the generator. In addition, a multi-level patch-wise discriminator structure is proposed to scale our model for high-resolution (\(1024 \times 1024\)) face editing. Experiments on the CelebA benchmark show that the proposed method significantly outperforms prior state-of-the-art approaches in terms of both image quality and editing performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/zllrunning/face-parsing.PyTorch.

  2. 2.

    We use \(\mathbf {att} \in \mathbb {R}^{C}\) to denote attributes without spatial dimension and \(\mathbf {Att} \in \mathbb {R}^{C\times H\times W}\) for attributes with spatial dimensions.

  3. 3.

    STGAN: https://github.com/csmliu/STGAN.

  4. 4.

    We pretrained an Inception-V3 model that achieves 92.69% average attribute classification accuracy on all 40 attributes of CelebA dataset.

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. arXiv preprint arXiv:1701.07875 (2017)

  2. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  3. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan: Interpretable representation learning by information maximizing generative adversarial nets. In: NIPS, pp. 2172–2180 (2016)

    Google Scholar 

  4. Chen, Y.C., Shen, X., Lin, Z., Lu, X., Pao, I.M., Jia, J.: Semantic component decomposition for face attribute manipulation. In: CVPR (2019)

    Google Scholar 

  5. Chen, Y.C., Xu, X., Tian, Z., Jia, J.: Homomorphic latent space interpolation for unpaired image-to-image translation. In: CVPR (2019)

    Google Scholar 

  6. Choi, Y., Choi, M., Kim, M., Ha, J., Kim, S., Choo, J.: Stargan: unified generative adversarial networks for multi-domain image-to-image translation. In: CVPR, pp. 8789–8797 (2018)

    Google Scholar 

  7. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)

    Google Scholar 

  8. Gu, S., Bao, J., Yang, H., Chen, D., Wen, F., Yuan, L.: Mask-guided portrait editing with conditional gans. In: CVPR (2019)

    Google Scholar 

  9. He, Z., Zuo, W., Kan, M., Shan, S., Chen, X.: Attgan: facial attribute editing by only changing what you want. IEEE Trans. Image Process. 28(11), 5464–5478 (2019)

    Article  MathSciNet  Google Scholar 

  10. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. arXiv preprint arXiv:1706.08500 (2017)

  11. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV (2017)

    Google Scholar 

  12. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  13. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved quality, stability, and variation. In: ICLR (2018)

    Google Scholar 

  14. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. CoRR.abs/1812.04948 (2018)

    Google Scholar 

  15. Klys, J., Snell, J., Zemel, R.S.: Learning latent subspaces in variational autoencoders. In: NeurIPS, pp. 6445–6455 (2018)

    Google Scholar 

  16. Lample, G., Zeghidour, N., Usunier, N., Bordes, A., Denoyer, L., Ranzato, M.: Fader networks: manipulating images by sliding attributes. In: NIPS, pp. 5969–5978 (2017)

    Google Scholar 

  17. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. In: ICML, pp. 1558–1566 (2016)

    Google Scholar 

  18. Le, V., Brandt, J., Lin, Z., Bourdev, L., Huang, T.S.: Interactive facial feature localization. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 679–692. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_49

    Chapter  Google Scholar 

  19. Lee, C.H., Liu, Z., Wu, L., Luo, P.: Maskgan: towards diverse and interactive facial image manipulation. arXiv preprint arXiv:1907.11922 (2019)

  20. Li, H., Dong, W., Hu, B.: Facial image attributes transformation via conditional recycle generative adversarial networks. J. Comput. Sci. Technol. 33(3), 511–521 (2018)

    Article  Google Scholar 

  21. Li, M., Zuo, W., Zhang, D.: Deep identity-aware transfer of facial attributes. CoRR abs/1610.05586 (2016)

    Google Scholar 

  22. Li, W., et al.: Object-driven text-to-image synthesis via adversarial training. In: CVPR (2019)

    Google Scholar 

  23. Liang, X., et al.: Human parsing with contextualized convolutional neural network. In: ICCV (2015)

    Google Scholar 

  24. Liu, M., et al.: STGAN: a unified selective transfer network for arbitrary image attribute editing. In: CVPR, pp. 3673–3682 (2019)

    Google Scholar 

  25. Liu, M., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: NIPS, pp. 700–708 (2017)

    Google Scholar 

  26. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV (2015)

    Google Scholar 

  27. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  28. Lu, Y., Tai, Y., Tang, C.: Attribute-guided face generation using conditional cyclegan. In: ECCV, pp. 293–308 (2018)

    Google Scholar 

  29. Ma, L., Jia, X., Georgoulis, S., Tuytelaars, T., Gool, L.V.: Exemplar guided unsupervised image-to-image translation. CoRR abs/1805.11145 (2018)

    Google Scholar 

  30. Park, T., Liu, M., Wang, T., Zhu, J.: Semantic image synthesis with spatially-adaptive normalization. In: CVPR (2019)

    Google Scholar 

  31. Perarnau, G., van de Weijer, J., Raducanu, B., Álvarez, J.M.: Invertible conditional gans for image editing. CoRR abs/1611.06355 (2016)

    Google Scholar 

  32. Shen, W., Liu, R.: Learning residual images for face attribute manipulation. In: CVPR, pp. 1225–1233 (2017)

    Google Scholar 

  33. Wang, Y., Wang, S., Qi, G., Tang, J., Li, B.: Weakly supervised facial attribute manipulation via deep adversarial network. In: WACV, pp. 112–121 (2018)

    Google Scholar 

  34. Xiao, T., Hong, J., Ma, J.: ELEGANT: exchanging latent encodings with GAN for transferring multiple face attributes. In: ECCV, pp. 172–187 (2018)

    Google Scholar 

  35. Xie, D., Yang, M., Deng, C., Liu, W., Tao, D.: Fully-featured attribute transfer. CoRR abs/1902.06258 (2019)

    Google Scholar 

  36. Yan, X., Yang, J., Sohn, K., Lee, H.: Attribute2Image: conditional image generation from visual attributes. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 776–791. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_47

    Chapter  Google Scholar 

  37. Yin, W., Liu, Z., Loy, C.C.: Instance-level facial attributes transfer with geometry-aware flow. CoRR abs/1811.12670 (2018)

    Google Scholar 

  38. Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: Bisenet: bilateral segmentation network for real-time semantic segmentation. In: ECCV (2018)

    Google Scholar 

  39. Zhang, G., Kan, M., Shan, S., Chen, X.: Generative adversarial network with spatial attention for face attribute editing. In: ECCV, pp. 422–437 (2018)

    Google Scholar 

  40. Zhang, H., et al.: Stackgan: text to photo-realistic image synthesis with stacked generative adversarial networks. In: ICCV (2017)

    Google Scholar 

  41. Zhang, H., et al.: Stackgan++: realistic image synthesis with stacked generative adversarial networks. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1947–1962 (2018)

    Article  Google Scholar 

  42. Zhang, J., et al.: Sparsely grouped multi-task generative adversarial networks for facial attribute manipulation. In: ACM MM, pp. 392–401 (2018)

    Google Scholar 

  43. Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversarial autoencoder. In: CVPR, pp. 4352–4360 (2017)

    Google Scholar 

  44. Zheng, X., Guo, Y., Huang, H., Li, Y., He, R.: A survey to deep facial attribute analysis. CoRR abs/1812.10265 (2018)

    Google Scholar 

  45. Zhou, S., Xiao, T., Yang, Y., Feng, D., He, Q., He, W.: Genegan: learning object transfiguration and object subspace from unpaired data. In: BMVC (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengchuan Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 34350 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, Y. et al. (2021). MagGAN: High-Resolution Face Attribute Editing with Mask-Guided Generative Adversarial Network. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12625. Springer, Cham. https://doi.org/10.1007/978-3-030-69538-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69538-5_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69537-8

  • Online ISBN: 978-3-030-69538-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics