Abstract
Filter pruning has drawn more attention since resource constrained platform requires more compact model for deployment. However, current pruning methods suffer either from the inferior performance of one-shot methods, or the expensive time cost of iterative training methods. In this paper, we propose a balanced filter pruning method for both performance and pruning speed. Based on the filter importance criteria, our method is able to prune a layer with approximate layer-wise optimal pruning rate at preset loss variation. The network is pruned in the layer-wise way without the time consuming prune-retrain iteration. If a pre-defined pruning rate for the entire network is given, we also introduce a method to find the corresponding loss variation threshold with fast converging speed. Moreover, we propose the layer group pruning and channel selection mechanism for channel alignment in network with short connections. The proposed pruning method is widely applicable to common architectures and does not involve any additional training except the final fine-tuning. Comprehensive experiments show that our method outperforms many state-of-the-art approaches.
D. Li, S. Chen—Contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)
Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)
LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Advances in Neural Information Processing Systems, pp. 598–605 (1990)
Hassibi, B., Stork, D.G.: Second order derivatives for network pruning: optimal brain surgeon. In: Advances in Neural Information Processing Systems, pp. 164–171 (1993)
Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710 (2016)
Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect: training deep neural networks with binary weights during propagations. In: Advances in Neural Information Processing Systems, pp. 3123–3131 (2015)
Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neural networks: Training neural networks with low precision weights and activations. The Journal of Machine Learning Research 18, 6869–6898 (2017)
Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear structure within convolutional networks for efficient evaluation. In: Advances in neural information processing systems. (2014) 1269–1277
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Advances in Neural Information Processing Systems, pp. 1135–1143 (2015)
Srinivas, S., Babu, R.V.: Data-free parameter pruning for deep neural networks. arXiv preprint arXiv:1507.06149 (2015)
Han, S., et al.: EIE: efficient inference engine on compressed deep neural network. ACM SIGARCH Computer Architecture News 44, 243–254 (2016)
Park, J., et al.: Faster CNNs with direct sparse convolutions and guided pruning. arXiv preprint arXiv:1608.01409 (2016)
Hu, H., Peng, R., Tai, Y., Tang, C., Trimming, N.: A data-driven neuron pruning approach towards efficient deep architectures. arXiv preprint arXiv:1607.03250 (2016)
Luo, J.H., Wu, J., Lin, W.: Thinet: a filter level pruning method for deep neural network compression. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5058–5066 (2017)
He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1389–1397 (2017)
He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median for deep convolutional neural networks acceleration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4340–4349 (2019)
Molchanov, P., Mallya, A., Tyree, S., Frosio, I., Kautz, J.: Importance estimation for neural network pruning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11264–11272 (2019)
He, Y., Lin, J., Liu, Z., Wang, H., Li, L.J., Han, S.: AMC: automl for model compression and acceleration on mobile devices. In: Proceedings of the European Conference on Computer Vision (ECCV). (2018) 784–800
Huang, Z., Wang, N.: Data-driven sparse structure selection for deep neural networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 317–334. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_19
Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)
Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Yu, R., et al.: NISP: pruning networks using neuron importance score propagation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9194–9203 (2018)
Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional networks through network slimming. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2736–2744 (2017)
Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440 (2016)
You, Z., Yan, K., Ye, J., Ma, M., Wang, P.: Gate decorator: global filter pruning method for accelerating deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 2133–2144 (2019)
Lin, S., et al.: Towards optimal structured CNN pruning via generative adversarial learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2790–2799 (2019)
Lin, S., Ji, R., Li, Y., Wu, Y., Huang, F., Zhang, B.: Accelerating convolutional networks via global & dynamic filter pruning. IJCA I, 2425–2432 (2018)
Ding, X., Ding, G., Guo, Y., Han, J.: Centripetal SGD for pruning very deep convolutional networks with complicated structure. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4943–4953 (2019)
Paszke, A., et al.: Automatic differentiation in pytorch (2017)
Lin, M., et al.: Hrank: filter pruning using high-rank feature map. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1529–1538 (2020)
Zhao, C., et al.: Variational convolutional neural network pruning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2780–2789 (2019)
Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, D., Chen, S., Liu, X., Sun, Y., Zhang, L. (2021). Towards Optimal Filter Pruning with Balanced Performance and Pruning Speed. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12625. Springer, Cham. https://doi.org/10.1007/978-3-030-69538-5_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-69538-5_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69537-8
Online ISBN: 978-3-030-69538-5
eBook Packages: Computer ScienceComputer Science (R0)