Nothing Special   »   [go: up one dir, main page]

Skip to main content

Lossless Image Compression Using a Multi-scale Progressive Statistical Model

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Abstract

Lossless image compression is an important technique for image storage and transmission when information loss is not allowed. With the fast development of deep learning techniques, deep neural networks have been used in this field to achieve a higher compression rate. Methods based on pixel-wise autoregressive statistical models have shown good performance. However, the sequential processing way prevents these methods to be used in practice. Recently, multi-scale autoregressive models have been proposed to address this limitation. Multi-scale approaches can use parallel computing systems efficiently and build practical systems. Nevertheless, these approaches sacrifice compression performance in exchange for speed. In this paper, we propose a multi-scale progressive statistical model that takes advantage of the pixel-wise approach and the multi-scale approach. We developed a flexible mechanism where the processing order of the pixels can be adjusted easily. Our proposed method outperforms the state-of-the-art lossless image compression methods on two large benchmark datasets by a significant margin without degrading the inference speed dramatically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. http://libpng.org/pub/png/libpng.html (libpng Home Page)

  2. Sneyers, J., Wuille, P.: FLIF: free lossless image format based on MANIAC compression. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 66–70. IEEE (2016)

    Google Scholar 

  3. https://jpeg.org/jpeg2000/: (JPEG - JPEG 2000)

  4. https://developers.google.com/speed/webp: (A new image format for the Web|WebP)

  5. Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22, 1649–1668 (2012). IIEEE

    Article  Google Scholar 

  6. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948). \(\_\)eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1538-7305.1948.tb01338.x

  7. Marpe, D., Wiegand, T., Sullivan, G.: The H.264/MPEG4 advanced video coding standard and its applications. IEEE Commun. Mag. 44, 134–143 (2006). Conference Name: IEEE Communications Magazine

    Article  Google Scholar 

  8. Marpe, D., Schwarz, H., Wiegand, T.: Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard. IEEE Trans. Circuits Syst. Video Technol. 13, 620–636 (2003). Conference Name: IEEE Transactions on Circuits and Systems for Video Technology

    Article  Google Scholar 

  9. Ho, J., Lohn, E., Abbeel, P.: Compression with Flows via Local Bits-Back Coding arXiv:1905.08500 [cs, math, stat] (2020)

  10. Townsend, J., Bird, T., Kunze, J., Barber, D.: HiLLoC: lossless image compression with hierarchical latent variable models (2019)

    Google Scholar 

  11. Johnston, N., et al.: Improved Lossy Image Compression with Priming and Spatially Adaptive Bit Rates for Recurrent Networks. arXiv:1703.10114 [cs] (2017)

  12. Hoogeboom, E., Peters, J.W.T., Berg, R.V.D., Welling, M.: Integer Discrete Flows and Lossless Compression. arXiv:1905.07376 [cs, stat] (2019)

  13. Mentzer, F., Van Gool, L., Tschannen, M.: Learning Better Lossless Compression Using Lossy Compression. arXiv:2003.10184 [cs, eess] (2020)

  14. Cao, S., Wu, C.Y., Krähenbühl, P.: Lossless Image Compression through Super-Resolution. arXiv:2004.02872 [cs, eess] (2020)

  15. Mentzer, F., Agustsson, E., Tschannen, M., Timofte, R., Van Gool, L.: Practical Full Resolution Learned Lossless Image Compression. arXiv:1811.12817 [cs, eess] (2019)

  16. Oord, A.v.d., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., Kavukcuoglu, K.: Conditional Image Generation with PixelCNN Decoders. arXiv:1606.05328 [cs] (2016)

  17. Oord, A.V.D., Kalchbrenner, N., Kavukcuoglu, K.: Pixel Recurrent Neural Networks. arXiv:1601.06759 [cs] (2016)

  18. Salimans, T., Karpathy, A., Chen, X., Kingma, D.P.: PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications (2016)

    Google Scholar 

  19. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using Real NVP. arXiv:1605.08803 [cs, stat] (2017)

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. arXiv:1512.03385 [cs] (2015)

  21. Krizhevsky, A., Hinton, G.: Learning Multiple Layers of Features from Tiny Images. Princeton, Citeseer (2009)

    Google Scholar 

  22. Chrabaszcz, P., Loshchilov, I., Hutter, F.: A Downsampled Variant of ImageNet as an Alternative to the CIFAR datasets. arXiv:1707.08819 [cs] (2017)

  23. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR09 (2009)

    Google Scholar 

  24. Kuznetsova, A., et al.: The open images dataset V4. Int. J. Comput. Vis. 128(7), 1956–1981 (2020). https://doi.org/10.1007/s11263-020-01316-z. ISSN 1573-1405

  25. Ramachandran, P., et al.: Fast Generation for Convolutional Autoregressive Models. arXiv:1704.06001 [cs, stat] (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglei Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 151 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Cricri, F., R. Tavakoli, H., Zou, N., Aksu, E., Hannuksela, M.M. (2021). Lossless Image Compression Using a Multi-scale Progressive Statistical Model. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12624. Springer, Cham. https://doi.org/10.1007/978-3-030-69535-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69535-4_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69534-7

  • Online ISBN: 978-3-030-69535-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics