Abstract
Lossless image compression is an important technique for image storage and transmission when information loss is not allowed. With the fast development of deep learning techniques, deep neural networks have been used in this field to achieve a higher compression rate. Methods based on pixel-wise autoregressive statistical models have shown good performance. However, the sequential processing way prevents these methods to be used in practice. Recently, multi-scale autoregressive models have been proposed to address this limitation. Multi-scale approaches can use parallel computing systems efficiently and build practical systems. Nevertheless, these approaches sacrifice compression performance in exchange for speed. In this paper, we propose a multi-scale progressive statistical model that takes advantage of the pixel-wise approach and the multi-scale approach. We developed a flexible mechanism where the processing order of the pixels can be adjusted easily. Our proposed method outperforms the state-of-the-art lossless image compression methods on two large benchmark datasets by a significant margin without degrading the inference speed dramatically.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
http://libpng.org/pub/png/libpng.html (libpng Home Page)
Sneyers, J., Wuille, P.: FLIF: free lossless image format based on MANIAC compression. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 66–70. IEEE (2016)
https://jpeg.org/jpeg2000/: (JPEG - JPEG 2000)
https://developers.google.com/speed/webp: (A new image format for the Web|WebP)
Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22, 1649–1668 (2012). IIEEE
Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948). \(\_\)eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1538-7305.1948.tb01338.x
Marpe, D., Wiegand, T., Sullivan, G.: The H.264/MPEG4 advanced video coding standard and its applications. IEEE Commun. Mag. 44, 134–143 (2006). Conference Name: IEEE Communications Magazine
Marpe, D., Schwarz, H., Wiegand, T.: Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard. IEEE Trans. Circuits Syst. Video Technol. 13, 620–636 (2003). Conference Name: IEEE Transactions on Circuits and Systems for Video Technology
Ho, J., Lohn, E., Abbeel, P.: Compression with Flows via Local Bits-Back Coding arXiv:1905.08500 [cs, math, stat] (2020)
Townsend, J., Bird, T., Kunze, J., Barber, D.: HiLLoC: lossless image compression with hierarchical latent variable models (2019)
Johnston, N., et al.: Improved Lossy Image Compression with Priming and Spatially Adaptive Bit Rates for Recurrent Networks. arXiv:1703.10114 [cs] (2017)
Hoogeboom, E., Peters, J.W.T., Berg, R.V.D., Welling, M.: Integer Discrete Flows and Lossless Compression. arXiv:1905.07376 [cs, stat] (2019)
Mentzer, F., Van Gool, L., Tschannen, M.: Learning Better Lossless Compression Using Lossy Compression. arXiv:2003.10184 [cs, eess] (2020)
Cao, S., Wu, C.Y., Krähenbühl, P.: Lossless Image Compression through Super-Resolution. arXiv:2004.02872 [cs, eess] (2020)
Mentzer, F., Agustsson, E., Tschannen, M., Timofte, R., Van Gool, L.: Practical Full Resolution Learned Lossless Image Compression. arXiv:1811.12817 [cs, eess] (2019)
Oord, A.v.d., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., Kavukcuoglu, K.: Conditional Image Generation with PixelCNN Decoders. arXiv:1606.05328 [cs] (2016)
Oord, A.V.D., Kalchbrenner, N., Kavukcuoglu, K.: Pixel Recurrent Neural Networks. arXiv:1601.06759 [cs] (2016)
Salimans, T., Karpathy, A., Chen, X., Kingma, D.P.: PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications (2016)
Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using Real NVP. arXiv:1605.08803 [cs, stat] (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. arXiv:1512.03385 [cs] (2015)
Krizhevsky, A., Hinton, G.: Learning Multiple Layers of Features from Tiny Images. Princeton, Citeseer (2009)
Chrabaszcz, P., Loshchilov, I., Hutter, F.: A Downsampled Variant of ImageNet as an Alternative to the CIFAR datasets. arXiv:1707.08819 [cs] (2017)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR09 (2009)
Kuznetsova, A., et al.: The open images dataset V4. Int. J. Comput. Vis. 128(7), 1956–1981 (2020). https://doi.org/10.1007/s11263-020-01316-z. ISSN 1573-1405
Ramachandran, P., et al.: Fast Generation for Convolutional Autoregressive Models. arXiv:1704.06001 [cs, stat] (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, H., Cricri, F., R. Tavakoli, H., Zou, N., Aksu, E., Hannuksela, M.M. (2021). Lossless Image Compression Using a Multi-scale Progressive Statistical Model. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12624. Springer, Cham. https://doi.org/10.1007/978-3-030-69535-4_37
Download citation
DOI: https://doi.org/10.1007/978-3-030-69535-4_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69534-7
Online ISBN: 978-3-030-69535-4
eBook Packages: Computer ScienceComputer Science (R0)