Abstract
Given a directed graph with each edge has a weight and several criteria, a multi-constraint shortest path query (CSP) asks for the shortest path that satisfies the constraints on these criteria. It is a general routing problem and can be used to customise user’s routing requirements. However, only the single-constraint version has been well studied while the multi-constraint version is ignored due to its complexity. In this paper, we explore the multi-CSP problem by extending three existing single-CSP algorithms (Skyline-Dijkstra, sKSP, and eKSP) and experimentally study their performance and behaviours. Experiment results provides insights of how the query distance, constraint ratio, criteria number, strictness, and correlation influence the query performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
It was called MinSum-MinSum problem as the term skyline was not used in the 1980s.
- 2.
References
Li, L., Hua, W., Du, X., Zhou, X.: Minimal on-road time route scheduling on time-dependent graphs. PVLDB 10(11), 1274–1285 (2017)
Li, L., Zheng, K., Wang, S., Hua, W., Zhou, X.: Go slow to go fast: minimal on-road time route scheduling with parking facilities using historical trajectory. VLDB J. 27(3), 321–345 (2018)
Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline queries. In: SIGMOD, pp. 467–47 (2003)
Kriegel, H.-P., Renz, M., Schubert, M.: Route skyline queries: a multi-preference path planning approach. In: ICDE 2010, pp. 261–272. IEEE (2010)
Gong, Q., Cao, H., Nagarkar, P.: Skyline queries constrained by multi-cost transportation networks. In: ICDE, pp. 926–937. IEEE (2019)
Ouyang, D., Yuan, L., Zhang, F., Qin, L., Lin, X.: Towards efficient path skyline computation in bicriteria networks. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds.) DASFAA 2018. LNCS, vol. 10827, pp. 239–254. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91452-7_16
Hansen, P.: Bicriterion path problems. In: Multiple Criteria Decision Making Theory and Application, pp. 109–127. Springer (1980). https://doi.org/10.1007/978-3-642-48782-8_9
Gao, J., Qiu, H., Jiang, X., Wang, T., Yang, D.: Fast top-k simple shortest paths discovery in graphs. In: CIKM, pp. 509–518 (2010)
Sedeño-Noda, A., Alonso-Rodríguez, S.: An enhanced K-SP algorithm with pruning strategies to solve the constrained shortest path problem. Appl. Math. Comput. 265, 602-618 (2015)
Kriegel, H.-P., Kröger, P., Kunath, P., Renz, M., Schmidt, T.: Proximity queries in large traffic networks. In: ACM GIS, pp. 1–8 (2007)
Joksch, H.C.: The shortest route problem with constraints. J. Math. Anal. Appl. 14(2), 191–197 (1966)
Handler, G.Y., Zang, I.: A dual algorithm for the constrained shortest path problem. Networks 10(4), 293–309 (1980)
Lozano, L., Medaglia, A.L.: On an exact method for the constrained shortest path problem. Comput. Oper. Res. 40(1), 378–384 (2013)
Zhang, M., Li, L., Hua, W., Zhou, X.: Efficient 2-hop labeling maintenance in dynamic small-world networks. In: ICDE. IEEE (2021)
Li, L., Wang, S., Zhou, X.: Fastest path query answering using time-dependent hop-labeling in road network. In: TKDE (2020)
Li, L., Zhang, M., Hua, W., Zhou, X.: Fast query decomposition for batch shortest path processing in road networks. In: ICDE (2020)
Zhang, M., Li, L., Hua, W., Zhou, X.: Stream processing of shortest path query in dynamic road networks. In: TKDE (2020)
Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68552-4_24
Storandt, S.: Route planning for bicycles–exact constrained shortest paths made practical via contraction hierarchy. In: ICAPS (2012)
Lorenz, D.H., Raz, D.: A simple efficient approximation scheme for the restricted shortest path problem. Oper. Res. Lett. 28(5), 213–219 (2001)
Juttner, A., Szviatovski, B., Mécs, I., Rajkó, Z.: Lagrange relaxation based method for the QoS routing problem. In: INFOCOM, vol. 2, pp. 859–868. IEEE (2001)
Kuipers, F., Orda, A., Raz, D., Van Mieghem, P.: A comparison of exact and \(\varepsilon \) -approximation algorithms for constrained routing. In: Boavida, F., Plagemann, T., Stiller, B., Westphal, C., Monteiro, E. (eds.) NETWORKING 2006. LNCS, vol. 3976, pp. 197–208. Springer, Heidelberg (2006). https://doi.org/10.1007/11753810_17
Tsaggouris, G., Zaroliagis, C.: Multiobjective optimization: improved FPTAS for shortest paths and non-linear objectives with applications. Theory Comput. Syst. 45(1), 162–186 (2009). https://doi.org/10.1007/s00224-007-9096-4
Wang, S., Xiao, X., Yang, Y., Lin, W.: Effective indexing for approximate constrained shortest path queries on large road networks. PVLDB 10(2), 61–72 (2016)
Li, L., Wang, S., Zhou, X.: Time-dependent hop labeling on road network. In: ICDE, pp. 902–913, April 2019
Jozefowiez, N., Semet, F., Talbi, E.-G.: Multi-objective vehicle routing problems. Eur. J. Oper. Res. 189(2), 293–309 (2008)
Shi, N., Zhou, S., Wang, F., Tao, Y., Liu, L.: The multi-criteria constrained shortest path problem. Transp. Res. Part E: Logist. Transp. Rev. 101, 13–29 (2017)
Braekers, K., Caris, A., Janssens, G.K.: Bi-objective optimization of drayage operations in the service area of intermodal terminals. Transp. Res. Part E: Logist. Transp. Rev. 65, 50–69 (2014)
Gandibleux, X., Beugnies, F., Randriamasy, S.: Martins’ algorithm revisited for multi-objective shortest path problems with a maxmin cost function. 4OR 4(1), 47–59 (2006). https://doi.org/10.1007/s10288-005-0074-x
Guerriero, F., Musmanno, R.: Label correcting methods to solve multicriteria shortest path problems. J. Optim. Theory Appl. 111(3), 589–613 (2001)
Skriver, A.J., Andersen, K.A.: A label correcting approach for solving bicriterion shortest-path problems. Comput. Oper. Res. 27(6), 507–524 (2000)
Yen, J.Y.: Finding the k shortest loopless paths in a network. Manage. Sci. 17(11), 712–716 (1971)
Meyer, U., Sanders, P.: \(\delta \)-stepping: a parallelizable shortest path algorithm. J. Algorithms 49(1), 114–152 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, X., Liu, Z., Zhang, M., Li, L. (2021). An Experimental Study on Exact Multi-constraint Shortest Path Finding. In: Qiao, M., Vossen, G., Wang, S., Li, L. (eds) Databases Theory and Applications. ADC 2021. Lecture Notes in Computer Science(), vol 12610. Springer, Cham. https://doi.org/10.1007/978-3-030-69377-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-69377-0_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69376-3
Online ISBN: 978-3-030-69377-0
eBook Packages: Computer ScienceComputer Science (R0)