Abstract
The Head Pose Estimation (HPE) is the study of the angular rotations of the head along the Pitch, Yaw, and Roll axes. Widely used in facial involving methods, as face frontalization, driver attention and best surveillance frame selection, is strongly related to facial features. In this study we examine the impact of facial expressions (FE) on HPE and, in particular, we put in relation the axis more affected by the error when a specific facial expression is observable. The HPE method chosen for this purpose is based on the Partitioned Iterated Function System (PIFS). For its construction this method is dependent on the facial appearance and self-similarity. Basing on this, and using a FER network, we observed that there is an evident relation between facial expressions and pose errors. This relation go thought the facial keypoints distances and can be discriminated along the three axes, by providing an estimate of the percentages of variation in errors related to a percentage of variation in distances.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abate, A.F., Barra, P., Bisogni, C., Nappi, M., Ricciardi, S.: Near real-time three axis head pose estimation without training. IEEE Access 7, 64256–64265 (2019). https://doi.org/10.1109/ACCESS.2019.2917451
Abdi, H.: Partial least square regression (pls regression). Encyclopedia Res. Methods Soc. Sci. 6(4), 792–795 (2003)
Ariz, M., Villanueva, A., Cabeza, R.: Robust and accurate 2d-tracking-based 3d positioning method: application to head pose estimation. Comput. Vis. Image Underst. 180, 13–22 (2019)
Barnsley, M.F., et al.: The Science of Fractal Images. Springer, New York (1988). https://doi.org/10.1007/978-1-4612-3784-6
Barra, P., Barra, S., Bisogni, C., De Marsico, M., Nappi, M.: Web-shaped model for head pose estimation: an approach for best exemplar selection. IEEE Trans. Image Process. 29, 5457–5468 (2020)
Bartlett, M.S., Littlewort, G., Frank, M., Lainscsek, C., Fasel, I., Movellan, J.: Recognizing facial expression: machine learning and application to spontaneous behavior. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 568–573. IEEE (2005)
Belhumeur, P.N., Jacobs, D.W., Kriegman, D.J., Kumar, N.: Localizing parts of faces using a consensus of exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2930–2940 (2013)
Bisogni, C., Nappi, M., Pero, C., Ricciardi, S.: Hp2ifs: head pose estimation exploiting partitioned iterated function systems. In: 25th International Conference on Pattern Recognition (ICPR2020) (2020). https://arxiv.org/abs/2003.11536
Chen, Y., Wang, J., Chen, S., Shi, Z., Cai, J.: Facial motion prior networks for facial expression recognition. In: 2019 IEEE Visual Communications and Image Processing, VCIP 2019, Sydney, Australia, December 1–4, 2019, pp. 1–4. IEEE (2019)
Czupryński, B., Strupczewski, A.: High accuracy head pose tracking survey. In: Ślȩzak, D., Schaefer, G., Vuong, S.T., Kim, Y.-S. (eds.) AMT 2014. LNCS, vol. 8610, pp. 407–420. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09912-5_34
Du, S., Tao, Y., Martinez, A.M.: Compound facial expressions of emotion. Proc. Natl. Acad. Sci. 111(15), E1454–E1462 (2014). https://doi.org/10.1073/pnas.1322355111
Ekman, P., Friesen, W.V.: Constants across cultures in the face and emotion. J. Pers. Soc. Psychol. 17(2), 124 (1971)
Fanelli, G., Weise, T., Gall, J., Van Gool, L.: Real time head pose estimation from consumer depth cameras. In: Joint Pattern Recognition Symposium (2011)
Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950)
Hough, P.V.: Method and means for recognizing complex patterns (Dec 18 1962), uS Patent 3,069,654
Hsu, H.W., Wu, T.Y., Wan, S., Wong, W.H., Lee, C.Y.: Quatnet: quaternion-based head pose estimation with multiregression loss. IEEE Trans. Multimedia 21(4), 1035–1046 (2018)
Jain, D.K., Shamsolmoali, P., Sehdev, P.: Extended deep neural network for facial emotion recognition. Pattern Recogn. Lett. 120, 69–74 (2019)
Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regression trees. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1867–1874 (2014)
Kim, J.H., Kim, B.G., Roy, P.P., Jeong, D.M.: Efficient facial expression recognition algorithm based on hierarchical deep neural network structure. IEEE Access 7, 41273–41285 (2019)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Li, S., Deng, W.: Deep facial expression recognition: a survey. IEEE Trans. Affect. Comput. (2020)
Lopes, A.T., de Aguiar, E., De Souza, A.F., Oliveira-Santos, T.: Facial expression recognition with convolutional neural networks: coping with few data and the training sample order. Pattern Recogn. 61, 610–628 (2017)
Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended cohn-kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, pp. 94–101. IEEE (2010)
Meng, Z., Liu, P., Cai, J., Han, S., Tong, Y.: Identity-aware convolutional neural network for facial expression recognition. In: 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pp. 558–565. IEEE (2017)
Mollahosseini, A., Hasani, B., Mahoor, M.H.: AffectNet: a database for facial expression, valence, and arousal computing in the wild. IEEE Trans. Affect. Comput. 10(1), 18–31 (2019)
Murphy-Chutorian, E., Trivedi, M.M.: Head pose estimation in computer vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 607–626 (2008)
Ranjan, R., Patel, V.M., Chellappa, R.: Hyperface: a deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Trans. Pattern Anal. Mach. Intell. 41(1), 121–135 (2019). https://doi.org/10.1109/TPAMI.2017.2781233
Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) ML -2003. LNCS (LNAI), vol. 3176, pp. 63–71. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28650-9_4
Sagonas, C., Antonakos, E., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild challenge: database and results. Image Vis. Comput. 47, 3–18 (2016)
Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild challenge: the first facial landmark localization challenge. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 397–403 (2013)
Shan, C., Gong, S., McOwan, P.W.: Facial expression recognition based on local binary patterns: a comprehensive study. Image Vis. Comput. 27(6), 803–816 (2009)
Valstar, M.F., Pantic, M.: Induced disgust, happiness and surprise: an addition to the mmi facial expression database. In: Proceedings of International Conference Language Resources and Evaluation, Workshop on EMOTION, Malta, 2019, May 2010, pp. 65–70 (2010)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2001. vol. 1, pp. I-I. IEEE (2001)
Wang, Y., Liang, W., Shen, J., Jia, Y., Yu, L.F.: A deep coarse-to-fine network for head pose estimation from synthetic data. Pattern Recogn. 94, 196–206 (2019)
Whitehill, J., Omlin, C.W.: HAAR features for FACS au recognition. In: 7th International Conference on Automatic Face and Gesture Recognition (FGR06), pp. 5-pp. IEEE (2006)
Yang, T.Y., Chen, Y.T., Lin, Y.Y., Chuang, Y.Y.: Fsa-net: Learning fine-grained structure aggregation for head pose estimation from a single image. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1087–1096 (2019)
Zhang, F., Zhang, T., Mao, Q., Xu, C.: Joint pose and expression modeling for facial expression recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3359–3368 (2018)
Zhou, E., Fan, H., Cao, Z., Jiang, Y., Yin, Q.: Extensive facial landmark localization with coarse-to-fine convolutional network cascade. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 386–391 (2013)
Zhu, X., Lei, Z., Shi, H., Liu, X., Li, S.Z.: Face alignment across large poses: a 3d solution. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)
Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2879–2886. IEEE (2012)
Zhu, X., Lei, Z., Liu, X., Shi, H., Li, S.Z.: Face alignment across large poses: a 3d solution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 146–155 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Bisogni, C., Pero, C. (2021). IFEPE: On the Impact of Facial Expression in Head Pose Estimation. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12665. Springer, Cham. https://doi.org/10.1007/978-3-030-68821-9_41
Download citation
DOI: https://doi.org/10.1007/978-3-030-68821-9_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68820-2
Online ISBN: 978-3-030-68821-9
eBook Packages: Computer ScienceComputer Science (R0)