Abstract
We present a multiregion image segmentation approach which utilizes multiscale anisotropic diffusion based scale spaces. By combining powerful edge preserving anisotropic diffusion smoothing with isolevel set linking and merging, we obtain coherent segments which are tracked across multiple scales. A hierarchical tree representation of the given input image with progressively simplified regions is used with intra-scale splitting and inter-scale merging for obtaining multiregion segmentations. Experimental results on natural and medical images indicate that multiregion, multiscale image segmentation (MMIS) approach obtains coherent segmentation results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alarcon, T., Dalmau, O.: Color categorization models for color image segmentation. In: Celebi, M.E., Smolka, B. (eds.) Advances in Low-Level Color Image Processing. LNCVB, vol. 11, pp. 303–327. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-007-7584-8_10
Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equation and Calculus of Variations. Springer-Verlag, New York, USA (2006)
Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)
Koepfler, G., Lopez, C., Morel, J.-M.: A multiscale algorithm for image segmentation by variational method. SIAM J. Numer. Anal 31(1), 282–299 (1994)
Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer (1994)
Morel, J.-M., Solimini, S.: Variational Methods in Image Processing. Birkhauser, Boston, MA, USA (1994)
Moreno, J.C., Prasath, V.B.S., Neves, J.C.: Color image processing by vectorial total variation with gradient channels coupling. Inverse Prob. Imaging 10(2), 461–497 (2016)
Mousavi, S.M.H., Vyacheslav, L., Prasath, V.B.S.: Analysis of a robust edge detection system in different color spaces using color and depth images. Comput. Opt. 43(4), 632–646 (2019)
Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)
Petrovic, A., Escoda, O.D., Vandergheynst, P.: Multiresolution segmentation of natural images: from linear to nonlinear scale-space representations. IEEE Trans. Image Process. 13(8), 1104–1114 (2004)
Prasath, V.B.S.: Color image segmentation based on vectorial multiscale diffusion with inter-scale linking. In: Chaudhury, S., Mitra, S., Murthy, C.A., Sastry, P.S., Pal, S.K. (eds.) PReMI 2009. LNCS, vol. 5909, pp. 339–344. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11164-8_55
Prasath, V.B.S., Moreno, J.C.: On convergent finite difference schemes for variational - PDE based image processing. Comput. Appl. Math. 37(2), 1562–1580 (2018)
Prasath, V.B.S., Thanh, D.N.H.: Structure tensor adaptive total variation for image restoration. Turk. J. Electr. Eng. Comput. Sci. 27(2), 1147–1156 (2019)
Prasath, V.B.S., Thanh, D.N.H., Hai, N.H.: On selecting the appropriate scale in image selective smoothing by nonlinear diffusion. In: 7th International Conference on Communications and Electronics (ICCE), Hue, Vietnam, June 2018
Thanh, D.N.H., Prasath, V.B.S., Hieu, L.M., Hien, N.N.: Melanoma skin cancer detection method based on adaptive principal curvature, color normalization and features extraction with the ABCD rule. J. Digit. Imaging (2020)
Tschumperle, D., Deriche, R.: Vector-valued image regularization with PDE’s: a common framework for different applications. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 506–517 (2005)
Vincken, K.L.: Probabilistic multiscale image segmentation by the hyperstack. PhD thesis, Utrecht University, The Netherlands (2001)
Vincken, K.L., Koster, A.S.E., Viergever, M.A.: Probabilistic multiscale image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 109–120 (1997)
Weickert, J.: Anisotropic diffusion in image Processing. B.G. Teubner-Verlag, Stuttgart, Germany (1998)
Weickert, J., Romeny, B.M.H., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7(3), 398–410 (1998)
Ziliani, F., Jensen, B.: Unsupervised image segmentation using the modified pyramidal linking approach. In: International Conference on Image Processing, pp. 303–307. IEEE (1998)
Acknowledgments
This research was funded by University of Economics Ho Chi Minh City, Vietnam.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Prasath, V.B.S., Thanh, D.N.H., Hai, N.H., Dvoenko, S. (2021). Multiregion Multiscale Image Segmentation with Anisotropic Diffusion. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12665. Springer, Cham. https://doi.org/10.1007/978-3-030-68821-9_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-68821-9_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68820-2
Online ISBN: 978-3-030-68821-9
eBook Packages: Computer ScienceComputer Science (R0)