Abstract
In recent years, multi-task learning (MTL) for image translation tasks has been actively explored. For MTL image translation, a network consisting of a shared encoder and multiple task-specific decoders is commonly used. In this case, half parts of the network are task-specific, which brings a significant increase in the number of parameters when the number of tasks increases. Therefore, task-specific parts should be as small as possible. In this paper, we propose a method for MTL image translation using a single network with negligibly small task-specific parts, in which we share not only the encoder part but also the decoder part. In the proposed method, activation signals are adjusted for each task using Feature-wise Linear Modulation (FiLM) which performs affine transformation based on task conditional signals. In addition, we tried to let a single network learn mixing of heterogeneous tasks such as a mix of semantic segmentation and style transfer. With several experiments, we demonstrate that a single network is able to learn heterogeneous image translation tasks and their mixed tasks by following our proposed method. In addition, despite its small model size, our network achieves better performance than some of the latest baselines in most of the individual tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bragman, F.J., Tanno, R., Ourselin, S., Alexander, D.C., Cardoso, J.: Stochastic filter groups for multi-task CNNs: learning specialist and generalist convolution kernels. In: ICCV (2019)
Chang, S., Park, S., Yang, J., Kwak, N.: Sym-parameterized dynamic inference for mixed-domain image translation. In: ICCV (2019)
Chen, Z., Badrinarayanan, V., Lee, C., Rabinovich, A.: GradNorm: gradient normalization for adaptive loss balancing in deep multitask networks. In: ICML (2018)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)
Dumoulin, V., Perez, E., Schucher, N., Strub, F., Vries, H.d., Courville, A., Bengio, Y.: Feature-wise transformations (2018). https://doi.org/10.23915/distill.00011. https://distill.pub/2018/feature-wise-transformations
Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style. In: ICLR (2017)
Dvornik, N., Shmelkov, K., Mairal, J., Schmid, C.: Blitznet: a real-time deep network for scene understanding. In: ICCV (2017)
Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: ICCV (2015)
Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. In: IJCV (2015)
Ghiasi, G., Lee, H., Kudlur, M., Dumoulin, V., Shlens, J.: Exploring the structure of a real-time, arbitrary neural artistic stylization network. In: BMVC (2017)
Girshick, R.: Fast R-CNN. In: ICCV (2015)
Hariharan, B., Arbelaez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours from inverse detectors. In: ICCV (2011)
He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)
Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV (2017)
Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_11
Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Kaiser, L., et al.: One model to learn them all. arXiv:1706.05137 (2017)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR (2019)
Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: CVPR (2018)
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
Kokkinos, I.: UberNet: training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory. In: ICCV (2017)
Liu, S., Johns, E., Davison, A.J.: End-to-end multi-task learning with attention. In: CVPR (2019)
Mallya, A., Davis, D., Lazebnik, S.: Piggyback: adapting a single network to multiple tasks by learning to mask weights. In: ECCV (2018)
Maninis, K.K., Radosavovic, I., Kokkinos, I.: Attentive single-tasking of multiple tasks. In: CVPR (2019)
Matsumoto, A., Yanai, K.: Continual learning of an image transformation network using task-dependent weight selection masks. In: ACPR (2019)
Guo, M., Haque, A., Huang, D.-A., Yeung, S., Fei-Fei, L.: Dynamic task prioritization for multitask learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 282–299. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_17
Misra, I., Shrivastava, A., Gupta, A., Hebert, M.: Cross-stitch networks for multi-task learning. In: CVPR (2016)
Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning with neural networks: a review. arXiv:1802.07569 (2018)
Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: CVPR (2019)
Perez, E., Strub, F., De Vries, H., Dumoulin, V., Courville, A.: FiLM: visual reasoning with a general conditioning layer. In: AAAI (2018)
Rosenfeld, A., Biparva, M., Tsotsos, J.K.: Priming neural networks. arXiv:1711.05918 (2017)
Standley, T., Zamir, A.R., Chen, D., Guibas, L.J., Malik, J., Savarese, S.: Which tasks should be learned together in multi-task learning? arXiv:1905.07553 (2019)
Strezoski, G., van Noord, N., Worring, M.: Many task learning with task routing. In: ICCV (2019)
Ulyanov, D., Vedaldi, A., Lempitsky, V.S.: Instance normalization: the missing ingredient for fast stylization. arXiv:1607.08022 (2016)
Vandenhende, S., Brabandere, B.D., Gool, L.V.: Branched multi-task networks: deciding what layers to share. arXiv:1904.02920 (2019)
Zhao, X., Li, H., Shen, X., Liang, X., Wu, Y.: A modulation module for multi-task learning with applications in image retrieval. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 415–432. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_25
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Takeda, M., Benitez, G., Yanai, K. (2021). Training of Multiple and Mixed Tasks with a Single Network Using Feature Modulation. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12662. Springer, Cham. https://doi.org/10.1007/978-3-030-68790-8_55
Download citation
DOI: https://doi.org/10.1007/978-3-030-68790-8_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68789-2
Online ISBN: 978-3-030-68790-8
eBook Packages: Computer ScienceComputer Science (R0)