Nothing Special   »   [go: up one dir, main page]

Skip to main content

Supervised Autoencoder Variants for End to End Anomaly Detection

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12662))

Included in the following conference series:

Abstract

Despite the success of deep learning in various domains such as natural language processing, speech recognition, and computer vision, learning from a limited amount of samples and generalizing to unseen data still pose challenges. Notably, in the tasks of outlier detection and imbalanced dataset classification, the label of interest is either scarce or its distribution is skewed, causing aggravated generalization problems. In this work, we pursue the direction of multi-task learning, specifically the idea of using supervised autoencoders (SAE), which allows us to combine unsupervised and supervised objectives in an end to end fashion. We extend this approach by introducing an adversarial supervised objective to enrich the representations which are learned for the classification task. We conduct thorough experiments on a broad range of tasks, including outlier detection, novelty detection, and imbalanced classification, and study the efficacy of our method against standard baselines using autoencoders. Our work empirically shows that the SAE methods outperform one class autoencoders, adversarially trained autoencoders and multi layer perceptrons in terms of AUPR score comparison. Additionally, our analysis of the obtained representations suggests that the adversarial reconstruction loss functions enforce the encodings to separate into class-specific clusters, which was not observed for non-adversarial reconstruction loss functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.daviddlewis.com/resources/testcollections/reuters21578/.

  2. 2.

    http://archive.ics.uci.edu/ml/datasets/Arrhythmia.

  3. 3.

    http://www.ai.sri.com/natural-language/projects/arpa-sls/atis.html.

  4. 4.

    https://www.unb.ca/cic/datasets/nsl.html.

References

  1. Aggarwal, C.C.: Outlier Analysis (2017)

    Google Scholar 

  2. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622–637. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_39

    Chapter  Google Scholar 

  3. Boyd, K., Eng, K.H., Page, C.D.: Area under the precision-recall curve: point estimates and confidence intervals. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 451–466. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40994-3_29

    Chapter  Google Scholar 

  4. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1) (2011)

    Google Scholar 

  5. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in CNNs. Neural Netw. 106, 249–259 (2018)

    Article  Google Scholar 

  6. Cardie, C., Howe, N.: Improving minority class prediction using case-specific feature weights (1997)

    Google Scholar 

  7. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)

    Article  MathSciNet  Google Scholar 

  8. Chalapathy, R., Menon, A.K., Chawla, S.: Anomaly detection using one-class neural networks. arXiv preprint arXiv:1802.06360 (2018)

  9. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 1–58 (2009)

    Article  Google Scholar 

  10. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321321–357 (2002)

    Article  Google Scholar 

  11. Chen, J., Sathe, S., Aggarwal, C., Turaga, D.: Outlier detection with autoencoder ensembles. In: Proceedings of the SIAM International Conference on Data Mining (2017)

    Google Scholar 

  12. Chong, Y.S., Tay, Y.H.: Abnormal event detection in videos using spatiotemporal autoencoder. In: Proceedings of the International Symposium on Neural Networks (2017)

    Google Scholar 

  13. Dau, H.A., Ciesielski, V., Song, A.: Anomaly detection using replicator neural networks trained on examples of one class. In: Dick, G., Tang, K. (eds.) SEAL 2014. LNCS, vol. 8886, pp. 311–322. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13563-2_27

    Chapter  Google Scholar 

  14. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 233–240 (2006)

    Google Scholar 

  15. Divekar, A., Parekh, M., Savla, V., Mishra, R., Shirole, M.: Benchmarking datasets for anomaly-based network intrusion detection: KDD CUP 99 alternatives. In: Proceedings of 3rd International Conference on Computing, Communication and Security (ICCCS) (2018)

    Google Scholar 

  16. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  17. Gao, S., Zhang, Y., Jia, K., Lu, J., Zhang, Y.: Single sample face recognition via learning deep supervised autoencoders. IEEE Trans. Inf. Forensics Secur. 10(10), 2108–2118 (2015)

    Article  Google Scholar 

  18. Gogoi, P., Borah, B., Bhattacharyya, D., Kalita, J.: Outlier identification using symmetric neighborhoods. Procedia Technol. 6, 239–246 (2012)

    Article  Google Scholar 

  19. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing Adversarial Examples. arXiv preprint arXiv:1412.6572 (2014)

  20. Hautamaki, V., Karkkainen, I., Franti, P.: Outlier detection using k-nearest neighbour graph. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 3 (2004)

    Google Scholar 

  21. Hawkins, D.M.: Identification of Outliers. Springer, Dordrecht (1980). https://doi.org/10.1007/978-94-015-3994-4

    Book  MATH  Google Scholar 

  22. Hawkins, S., He, H., Williams, G., Baxter, R.: Outlier detection using replicator neural networks. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2002. LNCS, vol. 2454, pp. 170–180. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46145-0_17

    Chapter  Google Scholar 

  23. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. In: Proceedings of International Conference on Learning Representations (2017)

    Google Scholar 

  24. Huang, C., Li, Y., Change Loy, C., Tang, X.: Learning deep representation for imbalanced classification. In: Proceedings of Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  25. Ishii, Y., Takanashi, M.: Low-cost unsupervised outlier detection by autoencoders with robust estimation. J. Inf. Process. 27, 335–339 (2019)

    Google Scholar 

  26. Japkowicz, N., Myers, C., Gluck, M., et al.: A novelty detection approach to classification. In: Proceedings of the International Joint Conference on Artificial Intelligence (1995)

    Google Scholar 

  27. Joachims, T.: Text categorization with Support Vector Machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0026683

    Chapter  Google Scholar 

  28. Kannan, R., Woo, H., Aggarwal, C.C., Park, H.: Outlier detection for text data. In: Proceedings of the International Conference on Data Mining (2017)

    Google Scholar 

  29. Kawaguchi, K., Kaelbling, L.P., Bengio, Y.: Generalization in deep learning. arXiv preprint arXiv:1710.05468 (2017)

  30. Kubat, M., Holte, R.C., Matwin, S.: Machine learning for the detection of oil spills in satellite radar images. Machine Learn. 30, 195–215 (1998)

    Article  Google Scholar 

  31. Kukar, M., Kononenko, I., et al.: Cost-sensitive learning with neural networks. In: Proceedings of European Conference on Artificial Intelligence (1998)

    Google Scholar 

  32. Lawrence, S., Burns, I., Back, A., Tsoi, A.C., Giles, C.L.: Neural network classification and prior class probabilities. In: Neural Networks: Tricks of the Trade (1998)

    Google Scholar 

  33. Le, L., Patterson, A., White, M.: Supervised autoencoders: improving generalization performance with unsupervised regularizers. In: Proceedings of Neural Information Processing Systems

    Google Scholar 

  34. Le, L., Patterson, A., White, M.: Supervised autoencoders: improving generalization performance with unsupervised regularizers. In: Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  35. Lee, H., Cho, S.: The novelty detection approach for different degrees of class imbalance. In: King, I., Wang, J., Chan, L.-W., Wang, D.L. (eds.) ICONIP 2006. LNCS, vol. 4233, pp. 21–30. Springer, Heidelberg (2006). https://doi.org/10.1007/11893257_3

    Chapter  Google Scholar 

  36. Liu, T., Tao, D., Song, M., Maybank, S.J.: Algorithm-dependent generalization bounds for multi-task learning. IEEE Trans. Pattern Analy. Mach. Intell. 39(2), 227–241 (2016)

    Article  Google Scholar 

  37. Lübbering, M., Ramamurthy, R., Gebauer, M., Bell, T., Sifa, R., Bauckhage, C.: From imbalanced classification to supervised outlier detection problems: adversarially trained auto encoders. In: Farkaš, I., Masulli, P., Wermter, S. (eds.) ICANN 2020. LNCS, vol. 12396, pp. 27–38. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61609-0_3

    Chapter  Google Scholar 

  38. Mazurowski, M.A., Habas, P.A., Zurada, J.M., Lo, J.Y., Baker, J.A., Tourassi, G.D.: Training neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performance. Neural Netw. 21, 427–436 (2008)

    Article  Google Scholar 

  39. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

  40. Neyshabur, B., Bhojanapalli, S., McAllester, D., Srebro, N.: Exploring generalization in deep learning. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 5947–5956 (2017)

    Google Scholar 

  41. Olszewski, D.: A probabilistic approach to fraud detection in telecommunications. Knowl.-Based Syst. 26, 246–258 (2012)

    Article  Google Scholar 

  42. Panigrahi, S., Kundu, A., Sural, S., Majumdar, A.K.: Credit card fraud detection: a fusion approach using Dempster-Shafer theory and Bayesian learning. Inf. Fusion 10(4), 354–363 (2009)

    Article  Google Scholar 

  43. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP) (2014)

    Google Scholar 

  44. Perera, P., Nallapati, R., Xiang, B.: OCGAN: one-class novelty detection using GANs with constrained latent representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2898–2906 (2019)

    Google Scholar 

  45. Ranzato, M., Szummer, M.: Semi-supervised learning of compact document representations with deep networks. In: Proceedings of International Conference on Machine learning (2008)

    Google Scholar 

  46. Sarvari, H., Domeniconi, C., Prenkaj, B., Stilo, G.: Unsupervised boosting-based autoencoder ensembles for outlier detection. arXiv preprint arXiv:1910.09754 (2019)

  47. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

    Chapter  Google Scholar 

  48. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Optimization, and Beyond, Regularization (2001)

    Google Scholar 

  49. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed Analysis of the KDD CUP 99 Data Set. In: Proceedings of IEEE Symposium on Computational Intelligence for Security and Defense Applications (2009)

    Google Scholar 

  50. Vu, H.S., Ueta, D., Hashimoto, K., Maeno, K., Pranata, S., Shen, S.M.: Anomaly detection with adversarial dual autoencoders. arXiv preprint arXiv:1902.06924 (2019)

  51. Wang, X., Du, Y., Lin, S., Cui, P., Yang, Y.: Self-adversarial variational autoencoder with gaussian anomaly prior distribution for anomaly detection. CoRR, abs/1903.00904 (2019)

    Google Scholar 

  52. Weston, J., Ratle, F., Mobahi, H., Collobert, R.: Deep learning via semi-supervised embedding. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 639–655. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_34

    Chapter  Google Scholar 

  53. Yang, Y., Liu, X.: A re-examination of text categorization methods. In: Proceedings of International Conference on Research and development in Information Retrieval (1999)

    Google Scholar 

  54. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

  55. Zenati, H., Foo, C.S., Lecouat, B., Manek, G., Chandrasekhar, V.R.: Efficient GAN-based anomaly detection. arXiv preprint arXiv:1802.06222 (2018)

  56. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining (2017)

    Google Scholar 

  57. Zou, J., Zhang, J., Jiang, P.: Credit Card Fraud Detection Using Autoencoder Neural Network. arXiv preprint arXiv:1908.11553 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Lübbering .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lübbering, M., Gebauer, M., Ramamurthy, R., Sifa, R., Bauckhage, C. (2021). Supervised Autoencoder Variants for End to End Anomaly Detection. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12662. Springer, Cham. https://doi.org/10.1007/978-3-030-68790-8_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68790-8_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68789-2

  • Online ISBN: 978-3-030-68790-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics