Nothing Special   »   [go: up one dir, main page]

Skip to main content

Explainable 3D-CNN for Multiple Sclerosis Patients Stratification

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Abstract

The growing availability of novel interpretation techniques opened the way to the application of deep learning models in the clinical field, including neuroimaging, where their use is still largely underexploited. In this framework, we focus the stratification of Multiple Sclerosis (MS) patients in the Primary Progressive versus the Relapsing-Remitting state of the disease using a 3D Convolutional Neural Network trained on structural MRI data. Within this task, the application of Layer-wise Relevance Propagation visualization allowed detecting the voxels of the input data mostly involved in the classification decision, potentially bringing to light brain regions which might reveal disease state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achiron, A., Chapman, J., Tal, S., Bercovich, E., Gil, H., Achiron, A.: Superior temporal gyrus thickness correlates with cognitive performance in multiple sclerosis. Brain Struct. Funct. 218(4), 943–950 (2013)

    Article  Google Scholar 

  2. Alber, M., et al.: Innvestigate neural networks!. J. Mach. Learn. Res. 20(93), 1–8 (2019)

    MathSciNet  Google Scholar 

  3. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS One 10(7), e0130140 (2015)

    Article  Google Scholar 

  4. Binder, A., Montavon, G., Lapuschkin, S., Müller, K.-R., Samek, W.: Layer-wise relevance propagation for neural networks with local renormalization layers. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016, Part II. LNCS, vol. 9887, pp. 63–71. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44781-0_8

    Chapter  MATH  Google Scholar 

  5. Böhle, M., Eitel, F., Weygandt, M., Ritter, K.: Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer’s disease classification. Front. Aging Neurosci. 11, 194 (2019). https://doi.org/10.3389/fnagi.2019.00194

    Article  Google Scholar 

  6. Calabrese, M., Castellaro, M.: Cortical gray matter MR imaging in multiple sclerosis. Neuroimaging Clin. 27(2), 301–312 (2017)

    Article  Google Scholar 

  7. Calabrese, M., et al.: Regional distribution and evolution of gray matter damage in different populations of multiple sclerosis patients. PloS One 10(8), e0135428 (2015)

    Article  Google Scholar 

  8. Calabrese, M., et al.: Basal ganglia and frontal/parietal cortical atrophy is associated with fatigue in relapsing-remitting multiple sclerosis. Mult. Scler. J. 16(10), 1220–1228 (2010). https://doi.org/10.1177/1352458510376405. pMID: 20670981

    Article  Google Scholar 

  9. Compston, A., Coles, A.: Multiple sclerosis. The Lancet 372(9648), 1502–1517 (2008). https://doi.org/10.1016/S0140-6736(08)61620-7

    Article  Google Scholar 

  10. De Santis, S., et al.: Characterizing microstructural tissue properties in multiple sclerosis with diffusion MRI at 7 t and 3 t: the impact of the experimental design. Neuroscience 403, 17–26 (2019)

    Article  Google Scholar 

  11. Eitel, F., et al.: Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation. arXiv preprint arXiv:1904.08771 (2019)

  12. Eshaghi, A., et al.: Progression of regional grey matter atrophy in multiple sclerosis. Brain 141(6), 1665–1677 (2018)

    Article  Google Scholar 

  13. Fischl, B.: FreeSurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  14. Geurts, J.J., Barkhof, F.: Grey matter pathology in multiple sclerosis. The Lancet Neurol. 7(9), 841–851 (2008)

    Article  Google Scholar 

  15. Geurts, J.J., Calabrese, M., Fisher, E., Rudick, R.A.: Measurement and clinical effect of grey matter pathology in multiple sclerosis. The Lancet Neurol. 11(12), 1082–1092 (2012)

    Article  Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (June 2016)

    Google Scholar 

  17. Huang, W.J., Chen, W.W., Zhang, X.: Multiple sclerosis: pathology, diagnosis and treatments. Exp. Ther. Med. 13(6), 3163–3166 (2017)

    Article  Google Scholar 

  18. Hulst, H.E., Geurts, J.J.: Gray matter imaging in multiple sclerosis: what have we learned? BMC Neurol. 11(1), 153 (2011)

    Article  Google Scholar 

  19. Hurwitz, B.J.: The diagnosis of multiple sclerosis and the clinical subtypes. Ann. Indian Acad. Neurol. 12(4), 226 (2009)

    Article  Google Scholar 

  20. Inojosa, H., Proschmann, U., Akgün, K., Ziemssen, T.: A focus on secondary progressive multiple sclerosis (SPMS): challenges in diagnosis and definition. J. Neurol. 1–12 (2019). https://doi.org/10.1007/s00415-019-09489-5

  21. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  22. Korolev, S., Safiullin, A., Belyaev, M., Dodonova, Y.: Residual and plain convolutional neural networks for 3D brain MRI classification. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 835–838. IEEE (2017)

    Google Scholar 

  23. Lassmann, H.: Multiple sclerosis pathology. Cold Spring Harb. Perspect. Med. 8(3), a028936 (2018)

    Article  Google Scholar 

  24. Lublin, F.D., et al.: Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83(3), 278–286 (2014)

    Article  Google Scholar 

  25. Lucchinetti, C., Brück, W., Parisi, J., Scheithauer, B., Rodriguez, M., Lassmann, H.: Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 47(6), 707–717 (2000)

    Google Scholar 

  26. Magliozzi, R., et al.: Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Ann. Neurol. 83(4), 739–755 (2018). https://doi.org/10.1002/ana.25197

    Article  Google Scholar 

  27. Manca, R., Sharrack, B., Paling, D., Wilkinson, I.D., Venneri, A.: Brain connectivity and cognitive processing speed in multiple sclerosis: a systematic review. J. Neurol. Sci. 388, 115–127 (2018)

    Article  Google Scholar 

  28. Marzullo, A., et al.: Classification of multiple sclerosis clinical profiles via graph convolutional neural networks. Front. Neurosci. 13, 594 (2019)

    Article  Google Scholar 

  29. Miller, D., Thompson, A., Filippi, M.: Magnetic resonance studies of abnormalities in the normal appearing white matter and grey matter in multiple sclerosis. J. Neurol. 250(12), 1407–1419 (2003)

    Article  Google Scholar 

  30. Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digit. Signal Process. 73, 1–15 (2018)

    Article  MathSciNet  Google Scholar 

  31. Nourbakhsh, B., Mowry, E.M.: Multiple sclerosis risk factors and pathogenesis. CONTINUUM: Lifelong Learn. Neurol. 25(3), 596–610 (2019)

    Google Scholar 

  32. Paszke, A., et al.: Automatic differentiation in PyTorch. In: Conference on Neural Information Processing Systems (NIPS) (2017)

    Google Scholar 

  33. Popescu, V., et al.: Brain atrophy and lesion load predict long term disability in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 84(10), 1082–1091 (2013). https://doi.org/10.1136/jnnp-2012-304094

    Article  Google Scholar 

  34. Rieke, J., Eitel, F., Weygandt, M., Haynes, J.-D., Ritter, K.: Visualizing convolutional networks for MRI-based diagnosis of Alzheimer’s disease. In: Stoyanov, D., et al. (eds.) MLCN/DLF/IMIMIC -2018. LNCS, vol. 11038, pp. 24–31. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02628-8_3

    Chapter  Google Scholar 

  35. Schmidt, P., et al.: An automated tool for detection of flair-hyperintense white-matter lesions in multiple sclerosis. Neuroimage 59(4), 3774–3783 (2012)

    Article  Google Scholar 

  36. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. arXiv preprint arXiv:1704.02685 (2017)

  37. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)

  38. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  39. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806 (2014)

  40. Vercellino, M., et al.: Demyelination, inflammation, and neurodegeneration in multiple sclerosis deep gray matter. J. Neuropathol. Exp. Neurol. 68(5), 489–502 (2009)

    Article  Google Scholar 

  41. Xie, N., Ras, G., van Gerven, M., Doran, D.: Explainable deep learning: A field guide for the uninitiated. arXiv preprint arXiv:2004.14545 (2020)

  42. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part I. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  43. Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M.: Visualizing deep neural network decisions: Prediction difference analysis. arXiv preprint arXiv:1702.04595 (2017)

Download references

Acknowledgements

This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC Advanced Grant agreement no. 694665: CoBCoM - Computational Brain Connectivity Mapping) and from the French government, through the 3IA Côte d’Azur Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR-10-P3IA-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Cruciani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cruciani, F. et al. (2021). Explainable 3D-CNN for Multiple Sclerosis Patients Stratification. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12663. Springer, Cham. https://doi.org/10.1007/978-3-030-68796-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68796-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68795-3

  • Online ISBN: 978-3-030-68796-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics