Nothing Special   »   [go: up one dir, main page]

Skip to main content

Deformable Convolutional LSTM for Human Body Emotion Recognition

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12663))

Included in the following conference series:

Abstract

People represent their emotions in a myriad of ways. Among the most important ones is whole body expressions which have many applications in different fields such as human-computer interaction (HCI). One of the most important challenges in human emotion recognition is that people express the same feeling in various ways using their face and their body. Recently many methods have tried to overcome these challenges using Deep Neural Networks (DNNs). However, most of these methods were based on images or on facial expressions only and did not consider deformation that may happen in the images such as scaling and rotation which can adversely affect the recognition accuracy. In this work, motivated by recent researches on deformable convolutions, we incorporate the deformable behavior into the core of convolutional long short-term memory (ConvLSTM) to improve robustness to these deformations in the image and, consequently, improve its accuracy on the emotion recognition task from videos of arbitrary length. We did experiments on the GEMEP dataset and achieved state-of-the-art accuracy of 98.8\(\%\) on the task of whole human body emotion recognition on the validation set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, F., Bari, A., Gavrilova, M.: Emotion recognition from body movement. IEEE Access 8, 11761–11781 (2019). https://doi.org/10.1109/ACCESS.2019.2963113

    Article  Google Scholar 

  2. Bänziger, T., Scherer, K.: Introducing the geneva multimodal emotion portrayal (gemep) corpus. Blueprint for Affective Computing: A Sourcebook (2010)

    Google Scholar 

  3. Chen, J., Chen, Z., Chi, Z., Fu, H.: Facial expression recognition in video with multiple feature fusion. IEEE Trans. Affect. Comput. 9, 38–50 (2016). https://doi.org/10.1109/TAFFC.2016.2593719

    Article  Google Scholar 

  4. Dai, J., et al.: Deformable convolutional networks (2017)

    Google Scholar 

  5. Du, S., Martinez, A.: Compound facial expressions of emotion: from basic research to clinical applications. Dial. Clin. Neurosci. 17, 443–455 (2015)

    Article  Google Scholar 

  6. Glowinski, D., Dael, N., Camurri, A., Volpe, G., Mortillaro, M., Scherer, K.: Toward a minimal representation of affective gestures. T. Affect. Comput. 2, 106–118 (2011). https://doi.org/10.1109/T-AFFC.2011.7

    Article  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  8. Jain, D., Shamsolmoali, P., Sehdev, P.: Extended deep neural network for facial emotion recognition. Pattern Recogn. Lett. 120, 69–74 (2019). https://doi.org/10.1016/j.patrec.2019.01.008

    Article  Google Scholar 

  9. Jeong, D., Kim, B.G., Dong, S.Y.: Deep joint spatiotemporal network (djstn) for efficient facial expression recognition. Sensors 20(7) (2020). https://doi.org/10.3390/s20071936, https://www.mdpi.com/1424-8220/20/7/1936

  10. Rajaram, S., Geetha, M.: Deep learning approach for emotion recognition from human body movements with feedforward deep convolution neural networks. Procedia Comput. Sci. 152, 158–165 (2019). https://doi.org/10.1016/j.procs.2019.05.038

    Article  Google Scholar 

  11. Santhoshkumar, R., Kalaiselvi Geetha, M.: Vision-based human emotion recognition using HOG-KLT feature. In: Singh, P.K., Pawłowski, W., Tanwar, S., Kumar, N., Rodrigues, J.J.P.C., Obaidat, M.S. (eds.) Proceedings of First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019). LNNS, vol. 121, pp. 261–272. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-3369-3_20

    Chapter  Google Scholar 

  12. Rajaram, S., Geetha, M.K., Arunnehru, J.: SVM-KNN based emotion recognition of human in video using hog feature and KLT tracking algorithm. Int. J. Pure Appl. Math. 117, 621–634 (2017)

    Google Scholar 

  13. Santhoshkumar, R., Geetha, M.K.: Emotion recognition on multi view static action videos using multi blocks maximum intensity code (MBMIC). In: Smys, S., Iliyasu, A.M., Bestak, R., Shi F. (eds.) New Trends in Computational Vision and Bio-inspired Computing, pp. 1143–1151. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41862-5-116

  14. Sharma, G., Dhall, A.: A survey on automatic multimodal emotion recognition in the wild. In: Phillips-Wren, G., Esposito, A., Jain, L.C. (eds.) Advances in Data Science: Methodologies and Applications. Intelligent Systems Reference Library, vol. 189, pp. 35–64. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-51870-7-3

  15. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: A machine learning approach for precipitation nowcasting (2015)

    Google Scholar 

  16. Zhang, L., Zhu, G., Shen, P., Song, J.: Learning spatiotemporal features using 3dcnn and convolutional LSTM for gesture recognition. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 3120–3128 (2017). https://doi.org/10.1109/ICCVW.2017.369

  17. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets v2: More deformable, better results (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peyman Tahghighi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tahghighi, P., Koochari, A., Jalali, M. (2021). Deformable Convolutional LSTM for Human Body Emotion Recognition. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12663. Springer, Cham. https://doi.org/10.1007/978-3-030-68796-0_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68796-0_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68795-3

  • Online ISBN: 978-3-030-68796-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics