Abstract
The exploitation of traces in JPEG double compressed images is of utter importance for investigations. Properly exploiting such insights, First Quantization Estimation (FQE) could be performed in order to obtain source camera model identification (CMI) and therefore reconstruct the history of a digital image. In this paper, a method able to estimate the first quantization factors for JPEG double compressed images is presented, employing a mixed statistical and Machine Learning approach. The presented solution is demonstrated to work without any a-priori assumptions about the quantization matrices. Experimental results and comparisons with the state-of-the-art show the goodness of the proposed technique.
S. Battiato, O. Giudice, F. Guarnera and G. Puglisi—Equal contributor.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barni, M., et al.: Aligned and non-aligned double JPEG detection using convolutional neural networks. J. Vis. Commun. Image Represent. 49, 153–163 (2017)
Battiato, S., Giudice, O., Guarnera, F., Puglisi, G.: Computational data analysis for first quantization estimation on JPEG double compressed images. In: 25th International Conference on Pattern Recognition (ICPR) (2020)
Bianchi, T., De Rosa, A., Piva, A.: Improved DCT coefficient analysis for forgery localization in JPEG images. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2444, 2447 (2011)
Bianchi, T., Piva, A.: Image forgery localization via block-grained analysis of JPEG artifacts. Proc. IEEE Trans. Inf. Forensics Secur. 7(3), 1003 (2012)
Dalmia, N., Okade, M.: First quantization matrix estimation for double compressed JPEG images utilizing novel DCT histogram selection strategy. In: Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing, pp. 1–8 (2016)
Dang-Nguyen, D., Pasquini, C., Conotter, V., Boato, G.: Raise: a raw images dataset for digital image forensics. In: Proceedings of the 6th ACM Multimedia Systems Conference, pp. 219–224 (2015)
Fan, Z., De Queiroz, R.: Identification of bitmap compression history: JPEG detection and quantizer estimation. IEEE Trans. Image Process. 12(2), 230–235 (2003)
Fan, Z., De Queiroz, R.L.: Maximum likelihood estimation of JPEG quantization table in the identification of bitmap compression history. In: Proceedings of the International Conference on Image Processing, pp. 948–951. 1 (2000)
Farid, H.: Digital image ballistics from JPEG quantization: a follow up study. Department of Computer Science, Dartmouth College, Technical report TR2008-638 (2008)
Galvan, F., Puglisi, G., Bruna, A.R., Battiato, S.: First quantization matrix estimation from double compressed JPEG images. IEEE Trans. Inf. Forensics Secur. 9(8), 1299–1310 (2014)
Giudice, O., Guarnera, F., Paratore, A., Battiato, S.: 1-D DCT domain analysis for JPEG double compression detection. In: Ricci, E., Rota Bulò, S., Snoek, C., Lanz, O., Messelodi, S., Sebe, N. (eds.) ICIAP 2019. LNCS, vol. 11752, pp. 716–726. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30645-8_65
Giudice, O., Paratore, A., Moltisanti, M., Battiato, S.: A classification engine for image ballistics of social data. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F. (eds.) ICIAP 2017. LNCS, vol. 10485, pp. 625–636. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68548-9_57
Hou, X., Harel, J., Koch, C.: Image signature: highlighting sparse salient regions. IEEE Trans. Pattern Anal. Mach. Intell. 34(1), 194–201 (2011)
Kee, E., Johnson, M.K., Farid, H.: Digital image authentication from JPEG headers. IEEE Trans. Inf. Forensics Secur. 6(3), 1066–1075 (2011)
Lam, E.Y., Goodman, J.W.: A mathematical analysis of the DCT coefficient distributions for images. IEEE Trans. Image Process. 9(10), 1661–1666 (2000)
Lukáš, J., Fridrich, J.: Estimation of primary quantization matrix in double compressed JPEG images. In: Proceedings of the Digital Forensic Research Workshop, pp. 5–8 (2003)
Niu, Y., Tondi, B., Zhao, Y., Barni, M.: Primary quantization matrix estimation of double compressed JPEG images via CNN. IEEE Signal Process. Lett. 27, 191–195 (2020)
Park, J., Cho, D., Ahn, W., Lee, H.-K.: Double JPEG detection in mixed jpeg quality factors using deep convolutional neural network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 656–672. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_39
Piva, A.: An overview on image forensics. ISRN Signal Process. 2013, 22 (2013)
Piva, A., Bianchi, T.: Detection of non-aligned double JPEG compression with estimation of primary compression parameters. In: Proceedings of 18th IEEE International Conference on Image Processing (ICIP), pp. 1929–1932. IEEE (2011)
Ravì, D., Farinella, G., Tomaselli, V., Guarnera, M., Battiato, S.: Representing scenes for real-time context classification on mobile devices. Pattern Recogn. 48, 4 (2015)
Schaefer, G., Stich, M.: UCID: an uncompressed color image database. In: Storage and Retrieval Methods and Applications for Multimedia 2004, vol. 5307, pp. 472–480. International Society for Optics and Photonics (2003)
Stamm, M.C., Wu, M., Liu, K.J.R.: Information forensics: an overview of the first decade. IEEE Access 1, 167–200 (2013)
Thai, T.H., Cogranne, R.: Estimation of primary quantization steps in double-compressed JPEG images using a statistical model of discrete cosine transform. IEEE Access 7, 76203–76216 (2019)
Uricchio, T., Ballan, L., Caldelli, R., Amerini, I.: Localization of JPEG double compression through multi-domain convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 53–59 (2017)
Varghese, G., Kumar, A.: Detection of double JPEG compression on color image using neural network classifier. Int. J. 3, 175–181 (2016)
Wallace, G.K.: The JPEG still picture compression standard. Commun. ACM 34(4), 30–44 (1991)
Wang, Q., Zhang, R.: Double JPEG compression forensics based on a convolutional neural network. EURASIP J. Inf. Secur. 2016(1), 23 (2016)
Yang, J., Zhang, Y., Zhu, G., Kwong, S.: A clustering-based framework for improving the performance of JPEG quantization step estimation. IEEE Trans. Circ. Syst. Video Technol. (2020)
Yao, H., Wei, H., Qiao, T., Qin, C.: JPEG quantization step estimation with coefficient histogram and spectrum analyses. J. Vis. Commun. Image Represent., 102795 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Battiato, S., Giudice, O., Guarnera, F., Puglisi, G. (2021). In-Depth DCT Coefficient Distribution Analysis for First Quantization Estimation. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12666. Springer, Cham. https://doi.org/10.1007/978-3-030-68780-9_45
Download citation
DOI: https://doi.org/10.1007/978-3-030-68780-9_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68779-3
Online ISBN: 978-3-030-68780-9
eBook Packages: Computer ScienceComputer Science (R0)