Nothing Special   »   [go: up one dir, main page]

Skip to main content

In-Depth DCT Coefficient Distribution Analysis for First Quantization Estimation

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Abstract

The exploitation of traces in JPEG double compressed images is of utter importance for investigations. Properly exploiting such insights, First Quantization Estimation (FQE) could be performed in order to obtain source camera model identification (CMI) and therefore reconstruct the history of a digital image. In this paper, a method able to estimate the first quantization factors for JPEG double compressed images is presented, employing a mixed statistical and Machine Learning approach. The presented solution is demonstrated to work without any a-priori assumptions about the quantization matrices. Experimental results and comparisons with the state-of-the-art show the goodness of the proposed technique.

S. Battiato, O. Giudice, F. Guarnera and G. Puglisi—Equal contributor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/LuaDist/libjpeg.

References

  1. Barni, M., et al.: Aligned and non-aligned double JPEG detection using convolutional neural networks. J. Vis. Commun. Image Represent. 49, 153–163 (2017)

    Article  Google Scholar 

  2. Battiato, S., Giudice, O., Guarnera, F., Puglisi, G.: Computational data analysis for first quantization estimation on JPEG double compressed images. In: 25th International Conference on Pattern Recognition (ICPR) (2020)

    Google Scholar 

  3. Bianchi, T., De Rosa, A., Piva, A.: Improved DCT coefficient analysis for forgery localization in JPEG images. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2444, 2447 (2011)

    Google Scholar 

  4. Bianchi, T., Piva, A.: Image forgery localization via block-grained analysis of JPEG artifacts. Proc. IEEE Trans. Inf. Forensics Secur. 7(3), 1003 (2012)

    Article  Google Scholar 

  5. Dalmia, N., Okade, M.: First quantization matrix estimation for double compressed JPEG images utilizing novel DCT histogram selection strategy. In: Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing, pp. 1–8 (2016)

    Google Scholar 

  6. Dang-Nguyen, D., Pasquini, C., Conotter, V., Boato, G.: Raise: a raw images dataset for digital image forensics. In: Proceedings of the 6th ACM Multimedia Systems Conference, pp. 219–224 (2015)

    Google Scholar 

  7. Fan, Z., De Queiroz, R.: Identification of bitmap compression history: JPEG detection and quantizer estimation. IEEE Trans. Image Process. 12(2), 230–235 (2003)

    Article  Google Scholar 

  8. Fan, Z., De Queiroz, R.L.: Maximum likelihood estimation of JPEG quantization table in the identification of bitmap compression history. In: Proceedings of the International Conference on Image Processing, pp. 948–951. 1 (2000)

    Google Scholar 

  9. Farid, H.: Digital image ballistics from JPEG quantization: a follow up study. Department of Computer Science, Dartmouth College, Technical report TR2008-638 (2008)

    Google Scholar 

  10. Galvan, F., Puglisi, G., Bruna, A.R., Battiato, S.: First quantization matrix estimation from double compressed JPEG images. IEEE Trans. Inf. Forensics Secur. 9(8), 1299–1310 (2014)

    Article  Google Scholar 

  11. Giudice, O., Guarnera, F., Paratore, A., Battiato, S.: 1-D DCT domain analysis for JPEG double compression detection. In: Ricci, E., Rota Bulò, S., Snoek, C., Lanz, O., Messelodi, S., Sebe, N. (eds.) ICIAP 2019. LNCS, vol. 11752, pp. 716–726. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30645-8_65

    Chapter  Google Scholar 

  12. Giudice, O., Paratore, A., Moltisanti, M., Battiato, S.: A classification engine for image ballistics of social data. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F. (eds.) ICIAP 2017. LNCS, vol. 10485, pp. 625–636. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68548-9_57

    Chapter  Google Scholar 

  13. Hou, X., Harel, J., Koch, C.: Image signature: highlighting sparse salient regions. IEEE Trans. Pattern Anal. Mach. Intell. 34(1), 194–201 (2011)

    Google Scholar 

  14. Kee, E., Johnson, M.K., Farid, H.: Digital image authentication from JPEG headers. IEEE Trans. Inf. Forensics Secur. 6(3), 1066–1075 (2011)

    Article  Google Scholar 

  15. Lam, E.Y., Goodman, J.W.: A mathematical analysis of the DCT coefficient distributions for images. IEEE Trans. Image Process. 9(10), 1661–1666 (2000)

    Article  Google Scholar 

  16. Lukáš, J., Fridrich, J.: Estimation of primary quantization matrix in double compressed JPEG images. In: Proceedings of the Digital Forensic Research Workshop, pp. 5–8 (2003)

    Google Scholar 

  17. Niu, Y., Tondi, B., Zhao, Y., Barni, M.: Primary quantization matrix estimation of double compressed JPEG images via CNN. IEEE Signal Process. Lett. 27, 191–195 (2020)

    Article  Google Scholar 

  18. Park, J., Cho, D., Ahn, W., Lee, H.-K.: Double JPEG detection in mixed jpeg quality factors using deep convolutional neural network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 656–672. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_39

    Chapter  Google Scholar 

  19. Piva, A.: An overview on image forensics. ISRN Signal Process. 2013, 22 (2013)

    Article  Google Scholar 

  20. Piva, A., Bianchi, T.: Detection of non-aligned double JPEG compression with estimation of primary compression parameters. In: Proceedings of 18th IEEE International Conference on Image Processing (ICIP), pp. 1929–1932. IEEE (2011)

    Google Scholar 

  21. Ravì, D., Farinella, G., Tomaselli, V., Guarnera, M., Battiato, S.: Representing scenes for real-time context classification on mobile devices. Pattern Recogn. 48, 4 (2015)

    Google Scholar 

  22. Schaefer, G., Stich, M.: UCID: an uncompressed color image database. In: Storage and Retrieval Methods and Applications for Multimedia 2004, vol. 5307, pp. 472–480. International Society for Optics and Photonics (2003)

    Google Scholar 

  23. Stamm, M.C., Wu, M., Liu, K.J.R.: Information forensics: an overview of the first decade. IEEE Access 1, 167–200 (2013)

    Article  Google Scholar 

  24. Thai, T.H., Cogranne, R.: Estimation of primary quantization steps in double-compressed JPEG images using a statistical model of discrete cosine transform. IEEE Access 7, 76203–76216 (2019)

    Article  Google Scholar 

  25. Uricchio, T., Ballan, L., Caldelli, R., Amerini, I.: Localization of JPEG double compression through multi-domain convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 53–59 (2017)

    Google Scholar 

  26. Varghese, G., Kumar, A.: Detection of double JPEG compression on color image using neural network classifier. Int. J. 3, 175–181 (2016)

    Google Scholar 

  27. Wallace, G.K.: The JPEG still picture compression standard. Commun. ACM 34(4), 30–44 (1991)

    Article  Google Scholar 

  28. Wang, Q., Zhang, R.: Double JPEG compression forensics based on a convolutional neural network. EURASIP J. Inf. Secur. 2016(1), 23 (2016)

    Article  Google Scholar 

  29. Yang, J., Zhang, Y., Zhu, G., Kwong, S.: A clustering-based framework for improving the performance of JPEG quantization step estimation. IEEE Trans. Circ. Syst. Video Technol. (2020)

    Google Scholar 

  30. Yao, H., Wei, H., Qiao, T., Qin, C.: JPEG quantization step estimation with coefficient histogram and spectrum analyses. J. Vis. Commun. Image Represent., 102795 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Guarnera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Battiato, S., Giudice, O., Guarnera, F., Puglisi, G. (2021). In-Depth DCT Coefficient Distribution Analysis for First Quantization Estimation. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12666. Springer, Cham. https://doi.org/10.1007/978-3-030-68780-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68780-9_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68779-3

  • Online ISBN: 978-3-030-68780-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics