Nothing Special   »   [go: up one dir, main page]

Skip to main content

Environmental Time Series Prediction with Missing Data by Machine Learning and Dynamics Recostruction

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12666))

Included in the following conference series:

  • 2421 Accesses

Abstract

Environmental time series are often affected by missing data, namely data unavailability at certain time points. In this paper, it is presented an Iterated Prediction and Imputation algorithm, that makes possible time series prediction in presence of missing data. The algorithm uses Dynamics Reconstruction and Machine Learning methods for estimating the model order and the skeleton of time series, respectively. Experimental validation of the algorithm on an environmental time series with missing data, expressing the concentration of Ozone in a European site, shows an average percentage prediction error of \(0.45\%\) on the test set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(\mathcal {I}(u)\) is 1 if the condition u is fulfilled, 0 otherwise.

  2. 2.

    \(|u|_{\epsilon }^2\) is u if \(u \ge \epsilon \), 0 otherwise.

References

  1. Chianese, E., Camastra, F., Ciaramella, A., Landi, T., Staiano, A., Riccio, A.: Spatio-temporal learning in predicting ambient particulate matter concentration by multi-layer perceptron. Ecol. Inf. 49, 54–61 (2019)

    Article  Google Scholar 

  2. Hirshberg, D., Merhav, N.: Robust methods for model order estimation. IEEE Trans. Signal Process. 44, 620–628 (1996)

    Article  Google Scholar 

  3. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley, New York (2001)

    MATH  Google Scholar 

  4. The Elements of Statistical Learning. SSS. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7_9

  5. Camastra, F., Filippone, M.: A comparative evaluation of nonlinear dynamics methods for time series prediction. Neural Comput. Appl. 18, 1021–1029 (2009)

    Article  Google Scholar 

  6. Mañé, R.: On the dimension of the compact invariant sets of certain non-linear maps. In: Rand, D., Young, L.-S. (eds.) Dynamical Systems and Turbulence, Warwick 1980. LNM, vol. 898, pp. 230–242. Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0091916

    Chapter  Google Scholar 

  7. Takens, F.: Detecting strange attractor in turbolence. In: Dynamical Systems and Turbolence, Warwick, pp. 366–381. MIT Press (1981)

    Google Scholar 

  8. Camastra, F., Staiano, A.: Intrinsic dimension estimation: advances and open problems. Inf. Sci. 328, 26–41 (2016)

    Article  Google Scholar 

  9. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica D 9, 189–208 (1983)

    Article  MathSciNet  Google Scholar 

  10. Camastra, F., Esposito, F., Staiano, A.: Linear SVM-based recognition of elementary juggling movements using correlation dimension of Euler angles of a single arm. Neural Comput. Appl. 26, 1005–1013 (2018)

    Article  Google Scholar 

  11. Trucco, E., Verri, A.: Introductory Techniques for 3-D Computer Vision. Prentice Hall, Englewood Cliffs (1998)

    Google Scholar 

  12. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  13. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  14. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)

    MATH  Google Scholar 

  15. Joachim, T.: Making large-scale SVM learning practical. In: Advances in Kernel Methods-Support Vector Learning, pp. 169–184. MIT Press (1999)

    Google Scholar 

  16. Allison, P.: Missing Data. Sage Publications, Thousand Oaks (2002)

    Book  Google Scholar 

  17. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  18. Scheinkman, J., Le Baron, B.: Nonlinear dynamics and stock returns. J. Bus. 62, 311–337 (1989)

    Article  Google Scholar 

  19. Williams, C., Rasmussen, C.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  20. Camastra, F., Vinciarelli, A.: Markovian models for sequential data. In: Advanced Information and Knowledge Processing, pp. 294–340. MIT Press (2015)

    Google Scholar 

Download references

Acknowledgements

Vincenzo Capone developed part of the work as final dissertation for B. Sc. in Computer Science, under supervision of F. Camastra, at University Parthenope of Naples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Camastra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Camastra, F., Capone, V., Ciaramella, A., Landi, T.C., Riccio, A., Staiano, A. (2021). Environmental Time Series Prediction with Missing Data by Machine Learning and Dynamics Recostruction. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12666. Springer, Cham. https://doi.org/10.1007/978-3-030-68780-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68780-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68779-3

  • Online ISBN: 978-3-030-68780-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics