Nothing Special   »   [go: up one dir, main page]

Skip to main content

Towards Urban Tree Recognition in Airborne Point Clouds with Deep 3D Single-Shot Detectors

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12667))

Included in the following conference series:

Abstract

Automatic mapping of individual urban trees is increasingly important to city administration and planing. Although deep learning algorithms are now standard methodology in computer vision, their adaption to individual tree detection in urban areas has hardly been investigated so far. In this work, we propose a deep single-shot object detection network to find urban trees in point clouds from airborne laser scanning. The network consists of a sparse 3D convolutional backbone for feature extraction and a subsequent single-shot region proposal network for the actual detection. It takes as input raw 3D voxel clouds, discretized from the point cloud in preprocessing. Outputs are cylindrical tree objects paired with their detection scores. We train and evaluate the network on the ISPRS Vaihingen 3D Benchmark dataset with custom tree object labels. The general feasibility of our approach is demonstrated. It achieves promising results compared to a traditional 2D baseline using watershed segmentation. We also conduct comparisons with state-of-the-art machine learning methods for semantic point segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bulatov, D., Wayand, I., Schilling, H.: Automatic tree-crown detection in challenging scenarios. In: ISPRS Archives, vol. XLI-B3, pp. 575–582 (2016)

    Google Scholar 

  2. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving. In: CVPR, pp. 6526–6534 (2017)

    Google Scholar 

  3. City of Melville Council: Urban forest strategic plan 2017–2036: Plan a: City-controlled plan. Technical report, City of Melville, Perth, Australia (2017)

    Google Scholar 

  4. Eysn, L., et al.: A benchmark of lidar-based single tree detection methods using heterogeneous forest data from the alpine space. Forests 6(5), 1721–1747 (2015)

    Article  Google Scholar 

  5. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The Kitti vision benchmark suite. In: CVPR, pp. 3354–3361 (2012)

    Google Scholar 

  6. Girshick, R.: Fast R-CNN. In: ICCV, pp. 1440–1448 (2015)

    Google Scholar 

  7. Graham, B., Engelcke, M., van der Maaten, L.: 3D semantic segmentation with submanifold sparse convolutional networks. In: CVPR, pp. 9224–9232 (2018)

    Google Scholar 

  8. Haala, N., Kölle, M., Cramer, M., Laupheimer, D., Mandlburger, G., Glira, P.: Hybrid georeferencing, enhancement and classification of ultra-high resolution UAV lidar and image point clouds for monitoring applications. ISPRS Ann. V-2-2020, 727–734 (2020)

    Google Scholar 

  9. Hirschmugl, M., Ofner, M., Raggam, J., Schardt, M.: Single tree detection in very high resolution remote sensing data. Remote Sens. Environ. 110(4), 533–544 (2007). ForestSAT Special Issue

    Google Scholar 

  10. Hu, P., Held, D., Ramanan, D.: Learning to optimally segment point clouds. IEEE Robot. Autom. Lett. 5(2), 875–882 (2020)

    Article  Google Scholar 

  11. Höfle, B., Hollaus, M., Hagenauer, J.: Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data. ISPRS J. Photogram. Remote Sens. 67, 134–147 (2012)

    Article  Google Scholar 

  12. Kaartinen, H., et al.: An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sens. 4(4), 950–974 (2012)

    Article  Google Scholar 

  13. Koch, B., Heyder, U., Weinacker, H.: Detection of individual tree crowns in airborne lidar data. Photogram. Eng. Remote Sens. 72(4), 357–363 (2006)

    Article  Google Scholar 

  14. Kölle, M., Walter, V., Schmohl, S., Soergel, U.: Hybrid acquisition of high quality training data for semantic segmentation of 3D point clouds using crowd-based active learning. ISPRS Ann. V-2-2020, 501–508 (2020)

    Google Scholar 

  15. Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.L.: Joint 3D proposal generation and object detection from view aggregation. In: IROS, pp. 1–8 (2018)

    Google Scholar 

  16. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: fast encoders for object detection from point clouds. In: CVPR, pp. 12689–12697 (2019)

    Google Scholar 

  17. Li, B.: 3D fully convolutional network for vehicle detection in point cloud. In: IROS, pp. 1513–1518 (2017)

    Google Scholar 

  18. Li, X., Chen, W.Y., Sanesi, G., Lafortezza, R.: Remote sensing in urban forestry: recent applications and future directions. Remote Sens. 11(10) (2019)

    Google Scholar 

  19. Liew, S.C., Huang, X., Lin, E.S., Shi, C., Yee, A.T.K., Tandon, A.: Integration of tree database derived from satellite imagery and LiDAR point cloud data. ISPRS Arch. XLII-4/W10, 105–111 (2018)

    Google Scholar 

  20. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  21. Man, Q., Dong, P., Yang, X., Wu, Q., Han, R.: Automatic extraction of grasses and individual trees in urban areas based on airborne hyperspectral and lidar data. Remote Sens. 12(17) (2020)

    Google Scholar 

  22. Niemeyer, J., Rottensteiner, F., Soergel, U.: Contextual classification of lidar data and building object detection in urban areas. ISPRS J. 87, 152–165 (2014)

    Google Scholar 

  23. Persson, A.: Extraction of individual trees using laser radar data. Technical report, Swedish Defence Research Agency (2001)

    Google Scholar 

  24. Pfeifer, N., Mandlburger, G., Otepka, J., Karel, W.: OPALS - a framework for airborne laser scanning data analysis. Comput. Environ. Urban Syst. 45, 125–136 (2014)

    Article  Google Scholar 

  25. Pleoianu, A.I., Stupariu, M.S., andric, I., Pătru-Stupariu, I., Drăguț L.: Individual tree-crown detection and species classification in very high-resolution remote sensing imagery using a deep learning ensemble model. Remote Sens. 12(15) (2020)

    Google Scholar 

  26. Qi, C.R., Litany, O., He, K., Guibas, L.: Deep Hough voting for 3D object detection in point clouds. In: ICCV, pp. 9276–9285 (2019)

    Google Scholar 

  27. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: NIPS, pp. 5105–5114 (2017)

    Google Scholar 

  28. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. CoRR abs/1804.02767 (2018)

    Google Scholar 

  29. Reitberger, J.: 3D Segmentierung von Einzelbäumen und Baumartenklasifikation aus Daten flugzeuggetragener Full Waveform Laserscanner. Ph.D. thesis, Fakultät für Bauingenieur- und Vermessungswesen der Technischen Universität München (2010)

    Google Scholar 

  30. Ren, M., Pokrovsky, A., Yang, B., Urtasun, R.: SBNet: sparse blocks network for fast inference. In: CVPR, pp. 8711–8720 (2018)

    Google Scholar 

  31. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE PAMI 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  32. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  33. Schmohl, S., Soergel, U.: Submanifold sparse convolutional networks for semantic segmentation of large-scale ALS point clouds. In: ISPRS Annals, vol. IV-2/W5, pp. 77–84 (2019)

    Google Scholar 

  34. Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: CVPR, pp. 770–779 (2019)

    Google Scholar 

  35. Shi, S., Wang, Z., Wang, X., Li, H.: From points to parts: 3D object detection from point cloud with part-aware and part-aggregation network. CoRR abs/1907.03670 (2019)

    Google Scholar 

  36. Simon, M., Milz, S., Amende, K., Gross, H.-M.: Complex-YOLO: an Euler-region-proposal for real-time 3D object detection on point clouds. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11129, pp. 197–209. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11009-3_11

    Chapter  Google Scholar 

  37. Song, S., Lichtenberg, S.P., Xiao, J.: Sun RGB-D: a RGB-D scene understanding benchmark suite. In: CVPR, pp. 567–576 (2015)

    Google Scholar 

  38. Wolf (né Straub), B.M., Heipke, C.: Automatic extraction and delineation of single trees from remote sensing data. Mach. Vis. Appl. 18(5), 317–330 (2007)

    Google Scholar 

  39. Walter, V., Kölle, M., Yin, Y.: Evaluation and optimisation of crowd-based collection of trees from 3D point clouds. ISPRS Ann. V-4-2020, 49–56 (2020)

    Google Scholar 

  40. Wang, D.Z., Posner, I.: Voting for voting in online point cloud object detection. In: Proceedings of Robotics: Science and Systems (2015)

    Google Scholar 

  41. Wegner, J.D., Branson, S., Hall, D., Schindler, K., Perona, P.: Cataloging public objects using aerial and street-level images - urban trees. In: CVPR, pp. 6014–6023 (2016)

    Google Scholar 

  42. Weinmann, M., Weinmann, M., Mallet, C., Brédif, M.: A classification-segmentation framework for the detection of individual trees in dense mms point cloud data acquired in urban areas. Remote Sens. 9(3) (2017)

    Google Scholar 

  43. Winiwarter, L., Mandlburger, G., Schmohl, S., Pfeifer, N.: Classification of ALS point clouds using end-to-end deep learning. PFG 87(3), 75–90 (2019)

    Article  Google Scholar 

  44. Xie, Y., Bao, H., Shekhar, S., Knight, J.: A timber framework for mining urban tree inventories using remote sensing datasets. In: ICDM, pp. 1344–1349 (2018)

    Google Scholar 

  45. Yan, Y., Mao, Y., Li, B.: Second: sparsely embedded convolutional detection. Sensors 18(10) (2018)

    Google Scholar 

  46. Yang, Z., Sun, Y., Liu, S., Shen, X., Jia, J.: STD: sparse-to-dense 3D object detector for point cloud. In: ICCV, pp. 1951–1960 (2019)

    Google Scholar 

  47. Zhang, C., Zhou, Y., Qiu, F.: Individual tree segmentation from lidar point clouds for urban forest inventory. Remote Sens. 7(6), 7892–7913 (2015)

    Article  Google Scholar 

  48. Zhao, R., Pang, M., Wang, J.: Classifying airborne lidar point clouds via deep features learned by a multi-scale convolutional neural network. Int. J. Geogr. Inf. Sci. 32(5), 960–979 (2018)

    Article  Google Scholar 

  49. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: CVPR, pp. 4490–4499 (2018)

    Google Scholar 

  50. Zhu, B., Jiang, Z., Zhou, X., Li, Z., Yu, G.: Class-balanced grouping and sampling for point cloud 3D object detection. CoRR abs/1908.09492 (2019)

    Google Scholar 

Download references

Acknowledgements

The Vaihingen dataset was provided by the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schmohl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schmohl, S., Kölle, M., Frolow, R., Soergel, U. (2021). Towards Urban Tree Recognition in Airborne Point Clouds with Deep 3D Single-Shot Detectors. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12667. Springer, Cham. https://doi.org/10.1007/978-3-030-68787-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68787-8_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68786-1

  • Online ISBN: 978-3-030-68787-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics