Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automatic MEP Component Detection with Deep Learning

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Abstract

Scan-to-BIM systems convert image and point cloud data into accurate 3D models of buildings. Research on Scan-to-BIM has largely focused on the automated identification of structural components. However, design and maintenance projects require information on a range of other assets including mechanical, electrical, and plumbing (MEP) components. This paper presents a deep learning solution that locates and labels MEP components in 360\(^{\circ }\) images and phone images, specifically sockets, switches and radiators. The classification and location data generated by this solution could add useful context to BIM models. The system developed for this project uses transfer learning to retrain a Faster Region-based Convolutional Neural Network (Faster R-CNN) for the MEP use case. The performance of the neural network across image formats is investigated. A dataset of 249 360\(^{\circ }\) images and 326 phone images was built to train the deep learning model. The Faster R-CNN achieved high precision and comparatively low recall across all image formats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adán, A., Quintana, B., Prieto, S.A., Bosché, F.: Scan-to-BIM for ‘secondary’ building components. Adv. Eng. Inf. 37, 119–138 (2018)

    Article  Google Scholar 

  2. Ahmed, M.F., Haas, C.T., Haas, R.: Automatic detection of cylindrical objects in built facilities. J. Comput. Civ. Eng. 28(3), 04014009 (2014)

    Article  Google Scholar 

  3. Babacan, K., Chen, L., Sohn, G.: Semantic segmentation of indoor point clouds using convolutional neural network. ISPRS Annals Photogramm. Remote Sens. Spat. Inf. Sci. 4, 101–108 (2017)

    Google Scholar 

  4. Barazzetti, L., Previtali, M., Roncoroni, F.: Can we use low-cost 360 degree cameras to create accurate 3D models? Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 42(2), 69–75 (2018)

    Google Scholar 

  5. Bassier, M., Vergauwen, M., Van Genechten, B.: Automated classification of heritage buildings for as-built BIM using machine learning techniques. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 4, pp. 25–30. Copernicus GmbH (2017)

    Google Scholar 

  6. Bosché, F., Ahmed, M., Turkan, Y., Haas, C.T., Haas, R.: The value of integrating Scan-to-BIM and Scan-vs-BIM techniques for construction monitoring using laser scanning and BIM: the case of cylindrical MEP components. Autom. Constr. 49, 201–213 (2015)

    Article  Google Scholar 

  7. Chen, J., Kira, Z., Cho, Y.K.: Deep learning approach to point cloud scene understanding for automated scan to 3D reconstruction. J. Comput. Civ. Eng. 33(4), 04019027 (2019)

    Google Scholar 

  8. COCO Dataset: Detection Evaluation (2019). http://cocodataset.org/#detection-eval

  9. Czerniawski, T., Nahangi, M., Haas, C., Walbridge, S.: Pipe spool recognition in cluttered point clouds using a curvature-based shape descriptor. Autom. Constr. 71(2), 346–358 (2016)

    Article  Google Scholar 

  10. Díaz-Vilariño, L., González-Jorge, H., Martínez-Sánchez, J., Lorenzo, H.: Automatic LiDAR-based lighting inventory in buildings. Meas. J. Int. Meas. Conf. 73, 544–550 (2015). https://doi.org/10.1016/j.measurement.2015.06.009

  11. Dimitrov, A., Golparvar-Fard, M.: Segmentation of building point cloud models including detailed architectural/structural features and MEP systems. Autom. Constr. 51, 32–45 (2015)

    Article  Google Scholar 

  12. Eruhimov, V., Meeussen, W.: Outlet detection and pose estimation for robot continuous operation. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2941–2946. Institute of Electrical and Electronics Engineers (IEEE), December 2011

    Google Scholar 

  13. Fan, Q., Brown, L., Smith, J.: A closer look at Faster R-CNN for vehicle detection. In: IEEE Intelligent Vehicles Symposium, Proceedings, pp. 124–129. Institute of Electrical and Electronics Engineers Inc., August 2016

    Google Scholar 

  14. Gao, T., Packer, B., Koller, D.: A segmentation-aware object detection model with occlusion handling. In: CVPR 2011, pp. 1361–1368. IEEE (2011)

    Google Scholar 

  15. Hamledari, H., McCabe, B., Davari, S.: Automated computer vision-based detection of components of under-construction indoor partitions. Autom. Constr. 74, 78–94 (2017)

    Article  Google Scholar 

  16. Hosang, J., Benenson, R., Dollár, P., Schiele, B.: What makes for effective detection proposals?. Technical report, Max Planck Institute for Informatics (2015)

    Google Scholar 

  17. Huang, J., You, S.: Detecting objects in scene point cloud: a combinational approach. In: 2013 International Conference on 3D Vision, pp. 175–182 (2013)

    Google Scholar 

  18. Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detectors. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7310–7311. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach (2017)

    Google Scholar 

  19. Kim, P., Chen, J., Cho, Y.K.: Robotic sensing and object recognition from thermal-mapped point clouds. Int. J. Intell. Robot. Appl. 1(3), 243–254 (2017). https://doi.org/10.1007/s41315-017-0023-9

    Article  Google Scholar 

  20. Krispel, U., Evers, H.L., Tamke, M., Viehauser, R., Fellner, D.W.: Automatic Texture and Orthophoto Generation From Registered Panoramic Views. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (2015)

    Google Scholar 

  21. Kropp, C., Koch, C., König, M.: Interior construction state recognition with 4D BIM registered image sequences. Autom. Constr. 86, 11–32 (2018)

    Article  Google Scholar 

  22. Lee, M., Kim, H., Paik, J.: Correction of barrel distortion in fisheye lens images using image-based estimation of distortion parameters. IEEE Access 7, 45723–45733 (2019)

    Article  Google Scholar 

  23. Li, J., Liang, X., Wei, Y., Xu, T., Feng, J., Yan, S.: Perceptual generative adversarial networks for small object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1951–1959 (2017)

    Google Scholar 

  24. Liang, Z., Shao, J., Zhang, D., Gao, L.: Small object detection using deep feature pyramid networks. In: Hong, R., Cheng, W.-H., Yamasaki, T., Wang, M., Ngo, C.-W. (eds.) PCM 2018. LNCS, vol. 11166, pp. 554–564. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00764-5_51

    Chapter  Google Scholar 

  25. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  26. Lopes, R., Yin, D., Poole, B., Gilmer, J., Cubuk, E.D.: Improving robustness without sacrificing accuracy with patch Gaussian augmentation. ArXiv (2019)

    Google Scholar 

  27. Maalek, R., Lichti, D.D., Ruwanpura, J.Y.: Automatic recognition of common structural elements from point clouds for automated progress monitoring and dimensional quality control in reinforced concrete construction. Remote Sens. 11(9), 1102 (2019)

    Article  Google Scholar 

  28. Maji, S., Malik, J.: Object detection using a max-margin Hough transform. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1038–1045. Institute of Electrical and Electronics Engineers (IEEE), March 2009

    Google Scholar 

  29. Meeussen, W., et al.: Autonomous door opening and plugging in with a personal robot. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 729–736 (2010)

    Google Scholar 

  30. Michie, D.: “memo” functions and machine learning. Nature 218(5136), 19–22 (1968)

    Article  Google Scholar 

  31. Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning. ArXiv, December 2017

    Google Scholar 

  32. Quintana, B., Prieto, S.A., Adán, A., Bosché, F.: Door detection in 3D coloured point clouds of indoor environments. Autom. Constr. 85, 146–166 (2018)

    Article  Google Scholar 

  33. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2015). https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  34. Ren, Y., Zhu, C., Xiao, S.: Small object detection in optical remote sensing images via modified faster R-CNN. Appl. Sci. 8(5), 813 (2018)

    Article  Google Scholar 

  35. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 60 (2019)

    Article  Google Scholar 

  36. Son, H., Kim, C., Kim, C.: Fully automated as-built 3d pipeline extraction method from laser-scanned data based on curvature computation. J. Comput. Civ. Eng. 29(4), B4014003 (2015)

    Article  Google Scholar 

  37. Song, L., Gong, D., Li, Z., Liu, C., Liu, W.: Occlusion robust face recognition based on mask learning with pairwise differential Siamese network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 773–782 (2019)

    Google Scholar 

  38. Turcsany, D., Mouton, A., Breckon, T.P.: Improving feature-based object recognition for X-ray baggage security screening using primed visual words. In: Proceedings of the IEEE International Conference on Industrial Technology, pp. 1140–1145 (2013)

    Google Scholar 

  39. Wu, R., Yan, S., Shan, Y., Dang, Q., Sun, G.: Deep image: scaling up image recognition. arXiv preprint arXiv:1501.02876 7(8) (2015)

Download references

Acknowledgements

This work was conducted as part of the BIMERR project has received funding from the European Commission’s Horizon 2020 research and innovation programme under grant agreement No 820621. The views and opinions expressed in this article are those of the authors and do not necessarily reflect any official policy or position of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dibya D. Mohanty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kufuor, J., Mohanty, D.D., Valero, E., Bosché, F. (2021). Automatic MEP Component Detection with Deep Learning. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12667. Springer, Cham. https://doi.org/10.1007/978-3-030-68787-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68787-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68786-1

  • Online ISBN: 978-3-030-68787-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics