Abstract
In this paper, we present new quality metrics for dynamic graph drawings. Namely, we present a new framework for change faithfulness metrics for dynamic graph drawings, which compare the ground truth change in dynamic graphs and the geometric change in drawings.
More specifically, we present two specific instances, cluster change faithfulness metrics and distance change faithfulness metrics. We first validate the effectiveness of our new metrics using deformation experiments. Then we compare various graph drawing algorithms using our metrics. Our experiments confirm that the best cluster (resp. distance) faithful graph drawing algorithms are also cluster (resp. distance) change faithful.
This work is supported by ARC DP grant.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Archambault, D., Purchase, H.C.: The “map” in the mental map: experimental results in dynamic graph drawing. Int. J. Hum Comput Stud. 71(11), 1044–1055 (2013)
Archambault, D., Purchase, H.C.: Can animation support the visualisation of dynamic graphs? Inf. Sci. 330, 495–509 (2016)
Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall PTR, Upper Saddle River (1998)
Baur, M., et al.: Visone software for visual social network analysis. In: International Symposium on Graph Drawing, pp. 463–464. Springer (2001). https://doi.org/10.1007/3-540-45848-4_47
Beck, F., Burch, M., Diehl, S., Weiskopf, D.: A taxonomy and survey of dynamic graph visualization. In: Computer Graphics Forum, vol. 36, pp. 133–159. Wiley Online Library, Hoboken (2017)
Böhringer, K.F., Paulisch, F.N.: Using constraints to achieve stability in automatic graph layout algorithms. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 43–51 (1990)
Brandes, U., Pich, C.: Eigensolver methods for progressive multidimensional scaling of large data. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 42–53. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70904-6_6
Branke, J.: Dynamic graph drawing. In: Kaufmann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 228–246. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44969-8_9
David, A.: Tulip. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 435–437. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45848-4_34
Diehl, S., Görg, C.: Graphs, they are changing. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 23–31. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36151-0_3
Eades, P., Hong, S.H., Nguyen, A., Klein, K.: Shape-based quality metrics for large graph visualization. J. Graph Algorithms Appl. 21(1), 29–53 (2017)
Eades, P., Lai, W., Misue, K., Sugiyama, K.: Preserving the mental map of a diagram. Technical report, Technical Report IIAS-RR-91-16E, Fujitsu Laboratories (1991)
Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz— open source graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 483–484. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45848-4_57
Fowlkes, E.B., Mallows, C.L.: A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78(383), 553–569 (1983). https://doi.org/10.1080/01621459.1983.10478008
Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Experience 21(11), 1129–1164 (1991). https://doi.org/10.1002/spe.4380211102
Gansner, E.R., Hu, Y., North, S.: A maxent-stress model for graph layout. IEEE Trans. Visual Comput. Graph. 19(6), 927–940 (2012)
Gansner, E.R., Koren, Y., North, S.: Graph drawing by stress majorization. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31843-9_25
Hu, Y.: Efficient, high-quality force-directed graph drawing. Math. J. 10(1), 37–71 (2005)
Huang, W., Hong, S.H., Eades, P.: Effects of crossing angles. In: 2008 IEEE Pacific Visualization Symposium, pp. 41–46. IEEE (2008)
Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985). https://doi.org/10.1007/BF01908075
Kruiger, J.F.: tsNET (2017). https://github.com/HanKruiger/tsNET/
Kruiger, J.F., Rauber, P.E., Martins, R.M., Kerren, A., Kobourov, S., Telea, A.C.: Graph layouts by t-SNE. Comput. Graph. Forum 36(3), 283–294 (2017). https://doi.org/10.1111/cgf.13187
Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)
MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press (1967)
Madan, A., Cebrian, M., Moturu, S., Farrahi, K., et al.: Sensing the “health state” of a community. IEEE Pervasive Comput. 11(4), 36–45 (2011)
Meidiana, A., Hong, S.H., Eades, P., Keim, D.: A quality metric for symmetric graph drawings. arXiv preprint arXiv:1910.04974 (2019)
Meidiana, A., Hong, S.-H., Eades, P., Keim, D.: A quality metric for visualization of clusters in graphs. In: Archambault, D., Tóth, C.D. (eds.) GD 2019. LNCS, vol. 11904, pp. 125–138. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35802-0_10
Meidiana, A., Hong, S.H., Eades, P., Keim, D.: Quality metrics for symmetric graph drawings. In: 2020 IEEE Pacific Visualization Symposium (PacificVis), pp. 11–15. IEEE (2020)
Nguyen, Q., Eades, P., Hong, S.H.: On the faithfulness of graph visualizations. In: 2013 IEEE Pacific Visualization Symposium (PacificVis), pp. 209–216. IEEE (2013)
Noack, A.: An energy model for visual graph clustering. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 425–436. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24595-7_40
Nocaj, A., Ortmann, M., Brandes, U.: Untangling the hairballs of multi-centered, small-world online social media networks. J. Graph Algorithms Appl. 19(2), 595–618 (2015). https://doi.org/10.7155/jgaa.00370
Ortmann, M., Klimenta, M., Brandes, U.: A sparse stress model. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 18–32. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-2_2
Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Purchase, H.: Which aesthetic has the greatest effect on human understanding? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63938-1_67
Purchase, H.C., Cohen, R.F., James, M.: Validating graph drawing aesthetics. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 435–446. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0021827
Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971). https://doi.org/10.1080/01621459.1971.10482356
Tamassia, R., Di Battista, G., Batini, C.: Automatic graph drawing and readability of diagrams. IEEE Trans. Syst. Man Cybern. 18(1), 61–79 (1988). https://doi.org/10.1109/21.87055
Torgerson, W.S.: Multidimensional scaling: I. theory and method. Psychometrika 17(4), 401–419 (1952). https://doi.org/10.1007/BF02288916
Tufte, E.R., Goeler, N.H., Benson, R.: Envisioning information, vol. 126. Graphics press Cheshire, CT (1990)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Meidiana, A., Hong, SH., Eades, P. (2020). New Quality Metrics for Dynamic Graph Drawing. In: Auber, D., Valtr, P. (eds) Graph Drawing and Network Visualization. GD 2020. Lecture Notes in Computer Science(), vol 12590. Springer, Cham. https://doi.org/10.1007/978-3-030-68766-3_35
Download citation
DOI: https://doi.org/10.1007/978-3-030-68766-3_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68765-6
Online ISBN: 978-3-030-68766-3
eBook Packages: Computer ScienceComputer Science (R0)