Nothing Special   »   [go: up one dir, main page]

Skip to main content

Drawing Tree-Based Phylogenetic Networks with Minimum Number of Crossings

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2020)

Abstract

In phylogenetics, tree-based networks are used to model and visualize the evolutionary history of species where reticulate events such as horizontal gene transfer have occurred. Formally, a tree-based network N consists of a phylogenetic tree T (a rooted, binary, leaf-labeled tree) and so-called reticulation edges that span between edges of T. The network N is typically visualized by drawing T downward and planar and reticulation edges with one of several different styles. One aesthetic criteria is to minimize the number of crossings between tree edges and reticulation edges. This optimization problem has not yet been researched. We show that, if reticulation edges are drawn x-monotone, the problem is NP-complete, but fixed-parameter tractable in the number of reticulation edges. If, on the other hand, reticulation edges are drawn like “ears”, the crossing minimization problem can be solved in quadratic time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anaya, M., et al.: On determining if tree-based networks contain fixed trees. Bull. Math. Biol. 78(5), 961–969 (2016). https://doi.org/10.1007/s11538-016-0169-x

    Article  MathSciNet  MATH  Google Scholar 

  2. Calamoneri, T., Di Donato, V., Mariottini, D., Patrignani, M.: Visualizing co-phylogenetic reconciliations. Theoret. Comput. Sci. 815, 228–245 (2020). https://doi.org/10.1016/j.tcs.2019.12.024

    Article  MathSciNet  MATH  Google Scholar 

  3. Doolittle, W.F.: Phylogenetic classification and the universal tree. Science 284(5423), 2124–2128 (1999). https://doi.org/10.1126/science.284.5423.2124

    Article  Google Scholar 

  4. Francis, A.R., Steel, M.: Which phylogenetic networks are merely trees with additional arcs? Syst. Biol. 64(5), 768–777 (2015). https://doi.org/10.1093/sysbio/syv037

    Article  Google Scholar 

  5. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. J. Comput. Syst. Sci. 30(2), 209–221 (1985). https://doi.org/10.1016/0022-0000(85)90014-5

    Article  MathSciNet  MATH  Google Scholar 

  6. Garey, M.R., Johnson, D.S.: Computers and intractability, vol. 174. Freeman San Francisco (1979)

    Google Scholar 

  7. Huson, D.H.: Drawing rooted phylogenetic networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(1), 103–109 (2009)

    Article  Google Scholar 

  8. Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts, Algorithms and Applications. Cambridge University Press (2010). https://doi.org/10.1093/sysbio/syr055

  9. Jetten, L., van Iersel, L.: Nonbinary tree-based phylogenetic networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 15(1), 205–217 (2018). https://doi.org/10.1109/TCBB.2016.2615918

    Article  Google Scholar 

  10. Kumar, V., et al.: The evolutionary history of bears is characterized by gene flow across species. Sci. Rep. 7(1) (2017). https://doi.org/10.1038/srep46487

  11. Pons, J.C., Semple, C., Steel, M.: Tree-based networks: characterisations, metrics, and support trees. J. Math. Biol. 78(4), 899–918 (2018). https://doi.org/10.1007/s00285-018-1296-9

    Article  MathSciNet  MATH  Google Scholar 

  12. Semple, C., Steel, M.A.: Phylogenetics, vol. 24. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  13. Steel, M.: Phylogeny: Discrete and Random Processes in Evolution. Society for Industrial and Applied Mathematics (2016)

    Google Scholar 

  14. Tollis, I.G., Kakoulis, K.G.: Algorithms for visualizing phylogenetic networks. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 183–195. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-2_15

    Chapter  Google Scholar 

  15. Vaughan, T.G., Welch, D., Drummond, A.J., Biggs, P.J., George, T., French, N.P.: Inferring ancestral recombination graphs from bacterial genomic data. Genetics 205(2), 857–870 (2017). https://doi.org/10.1534/genetics.116.193425

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Klawitter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klawitter, J., Stumpf, P. (2020). Drawing Tree-Based Phylogenetic Networks with Minimum Number of Crossings. In: Auber, D., Valtr, P. (eds) Graph Drawing and Network Visualization. GD 2020. Lecture Notes in Computer Science(), vol 12590. Springer, Cham. https://doi.org/10.1007/978-3-030-68766-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68766-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68765-6

  • Online ISBN: 978-3-030-68766-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics