Abstract
Attributed Network Embedding (ANE) aims to learn low-dimensional representation for each node while preserving topological information and node attributes. ANE has attracted increasing attention due to its great value in network analysis such as node classification, link prediction, and node clustering. However, most existing ANE methods only focus on preserving attribute information and local structure, while ignoring the community information. Community information reveals an implicit relationship between vertices from a global view, which can be a supplement to local information and help improve the quality of embedding. So, those methods just produce sub-optimal results for failing to preserve community information. To address this issue, we propose a novel method named DNEC to exploit local structural information, node attributes, and community information simultaneously. A novel deep neural network is designed to preserve both local structure and node attributes. At the same time, we propose a community random walk method and incorporate triplet-loss to preserve the community information. We conduct extensive experiments on multiple real-world networks. The experimental results show the effectiveness of our proposed method.
National Nature Science Foundation of China (61672111) and the Joint Fund of NSFC-General Technology Fundamental Research (U1836215,U1536111).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dong, Y., Zhang, J., Tang, J., Chawla, N.V., Wang, B.: CoupledLP: link prediction in coupled networks. In: 21th International Conference on Knowledge Discovery and Data Mining(SIGKDD 2015), pp. 199–208 (2015)
Tang, J., Liu, J., Zhang, M., Mei, Q.: Visualizing large-scale and high-dimensional data. In: 25th International Conference on World Wide Web(WWW 2016), pp. 287–297 (2016)
Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K.: Network anomaly detection: methods, systems and tools. Commun. Surv. Tutorials 2014, 303–336 (2014)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In:1st International Conference on Learning Representations (ICLR 2013), pp. 1–12 (2013)
Tomas, M., Ilya, S., Kai, C., Greg, S., Je, D.: Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems, pp. 3111–3119 (2013)
Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In:22nd International Conference on Knowledge Discovery and Data Mining (KDD 2016), pp. 855–864. ACM (2016)
Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: 24th International Conference on World Wide Web (WWW 2015), pp. 1067–1077 (2015)
Keikha, M.M., Rahgozar, M., Asadpour, M.: Community aware random walk for network embedding. Knowl. Based Syst. 148, 47–54 (2018)
Yang, C., Lu, H., Chen, K.: CONE: Community Oriented Network. http://arxiv.org/abs/1709.01554
Yang, L., Cao, X., Wang, C., Zhang, W.: Modularity based community detection with deep learning. In: 25th International Joint Conference on Artificial Intelligence (AAAI 2016), pp. 2252–2258 (2016)
Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.Y.: Network representation learning with rich text information. In: 24th International Conference on Artifificial Intelligence (IJCAI 2015), pp. 2111–2117 (2015)
Hongchang, G., Heng, H.: Deep Attributed network embedding. In: 27th International Joint Conference on Artificial Intelligence (IJCAI 2018), pp. 3364–3370 (2018)
Belkin, M., Niyogi, P.: Laplacian Eigenmaps and spectral techniques for embedding and clustering. In: Advances Neural Information Processing Systems, pp. 585–591 (2001)
Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: 20th International Conference on Knowledge Discovery and Data Mining (KDD 2014), pp. 701–710. ACM (2014)
Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: 22nd SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD 2016), pp. 1225–1234. ACM (2016)
Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations. In: 30th AAAI Conference on Artificial Intelligence (AAAI 2016), pp. 1145–1152 (2016)
Cao S., Lu W., Xu Q.: GraRep: learning graph representations with global structural. In 24th International Conference on Information and Knowledge Management (CIKM 2015), pp. 891–900. ACM (2015)
Pan, S., Wu, J., Zhu, X., Zhang, C., Wang, Y.: Tri-party deep network representation. In: 25th International Joint Conference on Artificial Intelligence (IJCAI 2016), pp. 1895–1901 (2016)
Rosvall, M., Bergstrom, C.: Maps of random walks on complex networks reveal community structure. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 105(4), pp. 1118–1123 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Xue, L., Yao, W., Xia, Y., Li, X. (2021). Deep Attributed Network Embedding with Community Information. In: Lokoč, J., et al. MultiMedia Modeling. MMM 2021. Lecture Notes in Computer Science(), vol 12572. Springer, Cham. https://doi.org/10.1007/978-3-030-67832-6_53
Download citation
DOI: https://doi.org/10.1007/978-3-030-67832-6_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-67831-9
Online ISBN: 978-3-030-67832-6
eBook Packages: Computer ScienceComputer Science (R0)