Abstract
The dynamics of body movements are often driven by large and intricate low-level interactions involving various body parts. These dynamics are part of an underlying data generation process. Incorporating the data generation process into data-driven activity recognition systems has the potential to enhance their robustness and data-efficiency. In this paper, we propose to model the underlying data generation process and use it to constrain training of simpler learning models via sample selection. As deriving such models using human expertise is hard, we propose to frame this task as a large-scale exploration of architectures in charge of relating sensory information coming from the data sources. We report on experiments conducted on the Sussex-Huawei locomotion dataset featuring a sensor-rich environment in real-life settings. The derived model is found to be consistent with existing domain knowledge. Compared to the basic setting, our approach achieves up to 17.84% improvement, by simultaneously reducing the number of required data sources by one-half. Promising results open perspectives for deploying more robust and data-efficient learning models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Software package and code to reproduce empirical results are publicly available at: https://github.com/sensor-rich/shl-nas.
- 2.
References
Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI, vol. 16, pp. 265–283 (2016)
Atrey, P.K., Hossain, M.A., El Saddik, A., Kankanhalli, M.S.: Multimodal fusion for multimedia analysis: a survey. Multimed. Syst. 16(6), 345–379 (2010). https://doi.org/10.1007/s00530-010-0182-0
Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. JMLR 13, 281–305 (2012)
Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: NIPS, pp. 2546–2554 (2011)
Bevilacqua, A., MacDonald, K., Rangarej, A., Widjaya, V., Caulfield, B., Kechadi, T.: Human activity recognition with convolutional neural networks. In: Brefeld, U., et al. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11053, pp. 541–552. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10997-4_33
Carpineti, C., Lomonaco, V., Bedogni, L., Di Felice, M., Bononi, L.: Custom dual transportation mode detection by smartphone devices exploiting sensor diversity. In: International Conference on Pervasive Computing and Communications Workshops, pp. 367–372. IEEE (2018)
Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 20(1), 37–46 (1960)
Dhiman, C., Vishwakarma, D.K., Aggarwal, P.: Skeleton based activity recognition by fusing part-wise spatio-temporal and attention driven residues. arXiv preprint arXiv:1912.00576 (2019)
Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. JMLR 20(55), 1–21 (2019)
Falkner, S., Klein, A., Hutter, F.: Bohb: robust and efficient hyperparameter optimization at scale. In: ICML, pp. 1437–1446 (2018)
Foerster, F., Smeja, M., Fahrenberg, J.: Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring. Comput. Hum. Behav. 15(5), 571–583 (1999)
Forman, G., Scholz, M.: Apples-to-apples in cross-validation studies: pitfalls in classifier performance measurement. SIGKDD Explor. Newslet. 12(1), 49–57 (2010)
Gaier, A., Ha, D.: Weight agnostic neural networks. In: NeurIPS (2019)
Gjoreski, H., Ciliberto, M., Morales, F.J.O., Roggen, D., Mekki, S., Valentin, S.: A versatile annotated dataset for multimodal locomotion analytics with mobile devices. In: Conference on Embedded Network Sensor Systems, p. 61. ACM (2017)
Gjoreski, H., et al.: The university of Sussex-Huawei locomotion and transportation dataset for multimodal analytics with mobile devices. IEEE Access, 6, 42592–42604 (2018)
Hammerla, N.Y., Plötz, T.: Let’s (not) stick together: pairwise similarity biases cross-validation in activity recognition. In: UbiComp, pp. 1041–1051. ACM (2015)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
Hoeffding, W.: A non-parametric test of independence. Ann. Math. Stat. 546–557 (1948)
Hoos, H., Leyton-Brown, K.: An efficient approach for assessing hyperparameter importance. In: International Conference on Machine Learning, pp. 754–762 (2014)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, vol. 37, pp. 448–456. PMLR (2015)
Kovalenko, M., Antoshchuk, S., Sieck, J.: Real-time hand tracking and gesture recognition using semantic-probabilistic network. In: International Conference on Computer Modelling and Simulation, pp. 269–274. IEEE (2014)
Kurle, R., Günnemann, S., van der Smagt, P.: Multi-source neural variational inference. In: AAAI, vol. 33, pp. 4114–4121 (2019)
Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: a novel bandit-based approach to hyperparameter optimization. JMLR 18(1), 6765–6816 (2017)
Liu, H., Simonyan, K., Yang, Y.: Darts: differentiable architecture search. In: ICLR (2019)
Mantyjarvi, J., Himberg, J., Seppanen, T.: Recognizing human motion with multiple acceleration sensors. In: SMC, vol. 2, pp. 747–752. IEEE (2001)
Muehlenstaedt, T., Roustant, O., Carraro, L., Kuhnt, S.: Data-driven Kriging models based on FANOVA-decomposition. Stat. Comput. 22(3), 723–738 (2012). https://doi.org/10.1007/s11222-011-9259-7
Nabian, M.A., Meidani, H.: Physics-driven regularization of deep neural networks for enhanced engineering design and analysis. J. Comput. Inf. Sci. in Eng. 20(1) (2020)
Osmani, A., Hamidi, M., Bouhouche, S.: Monitoring of a dynamical system based on autoencoders. In: IJCAI (2019)
Ousmer, M., Vanderdonckt, J., Buraga, S.: An ontology for reasoning on body-based gestures. In: SIGCHI EICS, pp. 1–6. ACM (2019)
Papadopoulos, G.T., Axenopoulos, A., Daras, P.: Real-time skeleton-tracking-based human action recognition using kinect data. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds.) MMM 2014. LNCS, vol. 8325, pp. 473–483. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04114-8_40
Parisi, G.I., Tani, J., Weber, C., Wermter, S.: Emergence of multimodal action representations from neural network self-organization. Cogn. Syst. Res. 43, 208–221 (2017)
Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J.: Efficient neural architecture search via parameters sharing. In: ICML, vol. 80, pp. 4095–4104. PMLR (2018)
Radu, V., et al.: Multimodal deep learning for activity and context recognition. IMWUT 1(4), 157 (2018)
Real, E., et al.: Large-scale evolution of image classifiers. In: ICML, pp. 2902–2911 (2017)
Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Using mobile phones to determine transportation modes. TOSN 6(2), 13 (2010)
Díaz Rodríguez, N., Wikström, R., Lilius, J., Cuéllar, M.P., Delgado Calvo Flores, M.: Understanding movement and interaction: an ontology for kinect-based 3D depth sensors. In: Urzaiz, G., Ochoa, S.F., Bravo, J., Chen, L.L., Oliveira, J. (eds.) UCAmI 2013. LNCS, vol. 8276, pp. 254–261. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03176-7_33
Stewart, R., Ermon, S.: Label-free supervision of neural networks with physics and domain knowledge. In: AAAI, vol. 1, pp. 1–7 (2017)
Vapnik, V., Izmailov, R.: Learning using privileged information: similarity control and knowledge transfer. JMLR 16(2023–2049), 2 (2015)
Vatavu, R.D., Pentiuc, S.G.: Multi-level representation of gesture as command for human computer interaction. Comput. Inform. 27(6), 837–851 (2012)
Wang, S., Chen, C., Ma, J.: Accelerometer based transportation mode recognition on mobile phones. In: APWCS, pp. 44–46. IEEE (2010)
Yu, M.C., Yu, T., Wang, S.C., Lin, C.J., Chang, E.Y.: Big data small footprint: the design of a low-power classifier for detecting transportation modes. Proc. VLDB Endow. 7(13), 1429–1440 (2014)
Zhang, M., Sawchuk, A.A.: USC-HAD: a daily activity dataset for ubiquitous activity recognition using wearable sensors. In: UbiComp, pp. 1036–1043 (2012)
Zheng, Y., Xie, X., Ma, W.Y.: GeoLife: a collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33(2), 32–39 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Hamidi, M., Osmani, A. (2021). Data Generation Process Modeling for Activity Recognition. In: Dong, Y., Mladenić, D., Saunders, C. (eds) Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12460. Springer, Cham. https://doi.org/10.1007/978-3-030-67667-4_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-67667-4_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-67666-7
Online ISBN: 978-3-030-67667-4
eBook Packages: Computer ScienceComputer Science (R0)