Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automated Detection of Standard Image Planes in 3D Echocardiographic Images

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2020)

Abstract

During the diagnosis and analysis of complex congenital heart malformation, it is time-consuming and tedious for doctors to search for standard image planes by hand from among the huge amounts of patients’ three-dimensional (3D) ultrasound heart images. To relieve the laborious manual searching task for echocardiographers, especially for non-physicians, this paper focuses on the auto-detection of five standard image planes suggested by experts in the 3D echocardiographic images. Firstly, the four-chamber (4C) image plane is auto-detected by template matching, and then the other standard image planes are obtained according to their spatial relation with the 4C image plane. We have tested our methods on 28 normal and 22 abnormal datasets, and the error rates are 7.1% and 13.6%, respectively. With low computational complexity and simple operation, the method of auto-detection of standard planes in 3D echocardiographic images shows encouraging prospects of application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adriaanse, B.M.E., van Vugt, J.M.G., Haak, M.C.: Three- and four-dimensional ultrasound in fetal echocardiography: an up-to-date overview. J. Perinatol. 36(9), 685–693 (2016)

    Article  Google Scholar 

  2. Dave, J.K., Mc Donald, M.E., Mehrotra, P., Kohut, A.R., Eisenbrey, J.R., Forsberg, F.: Recent technological advancements in cardiac ultrasound imaging. Ultrasonics 84, 329–340 (2018)

    Article  Google Scholar 

  3. Joao, P., Daniel, B., Nuno, A., Olivier, B., Johan, B., Jan, D.: Cardiac chamber volumetric assessment using 3D ultrasound - a review. Curr. Pharm. Des. 22(1), 105–121 (2016)

    Google Scholar 

  4. Sun, K., Chen, S., Jiang, H.: A methodological study on three-dimensional echocardiographic sectional diagnosis for complex congenital heart malformation. Zhongguo Chaosheng Yixue Zazhi 15(2), 84–88 (1999)

    Google Scholar 

  5. Zhou, J., et al.: Clinical value of fetal intelligent navigation echocardiography (5D Heart) in the display of key diagnostic elements in basic fetal echocardiographic views. Chin. J. Ultrason. 26(7), 592–598 (2017)

    Google Scholar 

  6. Li, J.: 3D Visualization and Computer Aided Diagnosis Based on Heart Images. Shanghai Jiaotong University, Shanghai (2015)

    Google Scholar 

  7. Chen, G.: Methodological Study and Application of Real-Time Three-Dimensional Echocardiography in Children with Complex Congenital Heart Disease. Fudan University, Shanghai (2006)

    Google Scholar 

  8. Zhou, S.K., Park, J., Georgescu, B., Comaniciu, D., Simopoulos, C., Otsuki, J.: Image-based multiclass boosting and echocardiographic view classification. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1559–1565 (2006)

    Google Scholar 

  9. Otey, M.E., et al.: Automatic view recognition for cardiac ultrasound images. In: Proceedings of the 1st International Workshop on Computer Vision for Intravascular and Intracardiac Imaging at Annual Conference on Medical Image Computing and Computer-Assisted Intervention (2008)

    Google Scholar 

  10. Leung, K.Y.E., et al.: Proceedings of the SPIE (2006)

    Google Scholar 

  11. Xiaoping, L., Xin, Y., Lanping, W., Xiao, T.: 2010 International Conference on Bioinformatics and Biomedical Technology (2010)

    Google Scholar 

  12. Aschkenasy, S.V., et al.: Unsupervised image classification of medical ultrasound data by multiresolution elastic registration. Ultrasound Med. Biol. 32(7), 1047–1054 (2006)

    Article  Google Scholar 

  13. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 9(1), 112–147 (1998)

    Article  MathSciNet  Google Scholar 

  14. Mandal, M.K., Aboulnasr, T., Panchanathan, S.: Fast wavelet histogram techniques for image indexing. Comput. Vis. Image Underst. 75(1–2), 99–110 (1999)

    Article  Google Scholar 

  15. Laine, A., Fan, J.: Texture classification by wavelet packet signatures. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1186–1191 (1993)

    Article  Google Scholar 

  16. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoPing Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, W., Liu, X., Wu, L. (2021). Automated Detection of Standard Image Planes in 3D Echocardiographic Images. In: Gao, H., Wang, X., Iqbal, M., Yin, Y., Yin, J., Gu, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 350. Springer, Cham. https://doi.org/10.1007/978-3-030-67540-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67540-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67539-4

  • Online ISBN: 978-3-030-67540-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics