Abstract
Cross-validation is commonly used to select the recommendation algorithms that will generalize best on yet unknown data. Yet, in many situations the available dataset used for cross-validation is scarce and the selected algorithm might not be the best suited for the unknown data. In contrast, established companies have a large amount of data available to select and tune their recommender algorithms, which therefore should generalize better. These companies often make their recommender systems available as black-boxes, i.e., users query the recommender through an API or a browser. This paper proposes RecRank, a technique that exploits a black-box recommender system, in addition to classic cross-validation. RecRank employs graph similarity measures to compute a distance between the output recommendations of the black-box and of the considered algorithms. We empirically show that RecRank provides a substantial improvement (33%) for the selection of algorithms for the MovieLens dataset, in comparison with standalone cross-validation.
G. Damaskinos—Work done during an internship at Technicolor - Rennes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
If the recommender only outputs a top-N list, the output for each item is the rank (e.g., value \(\in [1,5]\) for top-5 outputs).
- 2.
- 3.
- 4.
References
Agarwal, A., Wang, X., Li, C., Bendersky, M., Najork, M.: Offline comparison of ranking functions using randomized data. In: REVEAL (2018)
Beel, J., Langer, S.: A comparison of offline evaluations, online evaluations, and user studies in the context of research-paper recommender systems. In: Kapidakis, S., Mazurek, C., Werla, M. (eds.) TPDL 2015. LNCS, vol. 9316, pp. 153–168. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24592-8_12
Damaskinos, G.: RecRank source-code. https://github.com/gdamaskinos/RecRank
Damaskinos, G., Guerraoui, R., Patra, R.: Capturing the moment: lightweight similarity computations. In: ICDE, pp. 747–758. IEEE (2017). https://doi.org/10.1109/ICDE.2017.126
Dodge, Y.: The Concise Encyclopedia of Statistics. Springer Science & Business Media, New York (2008). https://doi.org/10.1007/978-0-387-32833-1
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
Hou, L., Liu, K., Liu, J.: Navigated random walks on Amazon book recommendation network. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds.) COMPLEX NETWORKS 2017 2017. SCI, vol. 689, pp. 935–945. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72150-7_75
Hussein, A., Gaber, M.M., Elyan, E., Jayne, C.: Imitation learning: a survey of learning methods. CSUR 50(2), 21 (2017)
Jenson, G.: Recommenders list (2019). https://github.com/grahamjenson/list_of_recommender_systems
Kille, B., et al.: Overview of CLEF newsreel 2015: news recommendation evaluation lab. In: International Conference of the CLEF Initiative (2015)
Košir, A., Odić, A., Tkalčič, M.: How to improve the statistical power of the 10-fold cross validation scheme in recommender systems. In: RepSys, pp. 3–6. ACM (2013)
Kowald, D., Kopeinik, S., Lex, E.: The TagRec framework as a toolkit for the development of tag-based recommender systems. In: UMAP, pp. 23–28. ACM, New York (2017). https://doi.org/10.1145/3099023.3099069
Le Merrer, E., Trédan, G.: The topological face of recommendation. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds.) COMPLEX NETWORKS 2017 2017. SCI, vol. 689, pp. 897–908. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72150-7_72
Lécuyer, M., et al.: XRay: enhancing the web’s transparency with differential correlation. In: USENIX Security Symposium, pp. 49–64 (2014)
Pan, W., Xiang, E.W., Liu, N.N., Yang, Q.: Transfer learning in collaborative filtering for sparsity reduction. In: AAAI (2010)
Polino, A., Pascanu, R., Alistarh, D.: Model compression via distillation and quantization. In: ICLR (2018)
IMDB via RapidAPI query limit. https://rapidapi.com/blog/how-to-use-imdb-api/
Said, A., Bellogín, A.: Rival: a toolkit to foster reproducibility in recommender system evaluation. In: RecSys, pp. 371–372. ACM (2014)
Vartak, M., Thiagarajan, A., Miranda, C., Bratman, J., Larochelle, H.: A meta-learning perspective on cold-start recommendations for items. In: NIPS, pp. 6904–6914 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Damaskinos, G., Guerraoui, R., Le Merrer, E., Neumann, C. (2021). The Imitation Game: Algorithm Selection by Exploiting Black-Box Recommenders. In: Georgiou, C., Majumdar, R. (eds) Networked Systems. NETYS 2020. Lecture Notes in Computer Science(), vol 12129. Springer, Cham. https://doi.org/10.1007/978-3-030-67087-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-67087-0_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-67086-3
Online ISBN: 978-3-030-67087-0
eBook Packages: Computer ScienceComputer Science (R0)