Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Imitation Game: Algorithm Selection by Exploiting Black-Box Recommenders

  • Conference paper
  • First Online:
Networked Systems (NETYS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 12129))

Included in the following conference series:

  • 456 Accesses

Abstract

Cross-validation is commonly used to select the recommendation algorithms that will generalize best on yet unknown data. Yet, in many situations the available dataset used for cross-validation is scarce and the selected algorithm might not be the best suited for the unknown data. In contrast, established companies have a large amount of data available to select and tune their recommender algorithms, which therefore should generalize better. These companies often make their recommender systems available as black-boxes, i.e., users query the recommender through an API or a browser. This paper proposes RecRank, a technique that exploits a black-box recommender system, in addition to classic cross-validation. RecRank employs graph similarity measures to compute a distance between the output recommendations of the black-box and of the considered algorithms. We empirically show that RecRank provides a substantial improvement (33%) for the selection of algorithms for the MovieLens dataset, in comparison with standalone cross-validation.

G. Damaskinos—Work done during an internship at Technicolor - Rennes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    If the recommender only outputs a top-N list, the output for each item is the rank (e.g., value \(\in [1,5]\) for top-5 outputs).

  2. 2.

    http://grouplens.org/datasets/movielens/.

  3. 3.

    https://www.librec.net/.

  4. 4.

    https://www.surpriselib.com/.

References

  1. Agarwal, A., Wang, X., Li, C., Bendersky, M., Najork, M.: Offline comparison of ranking functions using randomized data. In: REVEAL (2018)

    Google Scholar 

  2. Beel, J., Langer, S.: A comparison of offline evaluations, online evaluations, and user studies in the context of research-paper recommender systems. In: Kapidakis, S., Mazurek, C., Werla, M. (eds.) TPDL 2015. LNCS, vol. 9316, pp. 153–168. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24592-8_12

    Chapter  Google Scholar 

  3. Damaskinos, G.: RecRank source-code. https://github.com/gdamaskinos/RecRank

  4. Damaskinos, G., Guerraoui, R., Patra, R.: Capturing the moment: lightweight similarity computations. In: ICDE, pp. 747–758. IEEE (2017). https://doi.org/10.1109/ICDE.2017.126

  5. Dodge, Y.: The Concise Encyclopedia of Statistics. Springer Science & Business Media, New York (2008). https://doi.org/10.1007/978-0-387-32833-1

    Book  MATH  Google Scholar 

  6. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  7. Hou, L., Liu, K., Liu, J.: Navigated random walks on Amazon book recommendation network. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds.) COMPLEX NETWORKS 2017 2017. SCI, vol. 689, pp. 935–945. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72150-7_75

    Chapter  Google Scholar 

  8. Hussein, A., Gaber, M.M., Elyan, E., Jayne, C.: Imitation learning: a survey of learning methods. CSUR 50(2), 21 (2017)

    Article  Google Scholar 

  9. Jenson, G.: Recommenders list (2019). https://github.com/grahamjenson/list_of_recommender_systems

  10. Kille, B., et al.: Overview of CLEF newsreel 2015: news recommendation evaluation lab. In: International Conference of the CLEF Initiative (2015)

    Google Scholar 

  11. Košir, A., Odić, A., Tkalčič, M.: How to improve the statistical power of the 10-fold cross validation scheme in recommender systems. In: RepSys, pp. 3–6. ACM (2013)

    Google Scholar 

  12. Kowald, D., Kopeinik, S., Lex, E.: The TagRec framework as a toolkit for the development of tag-based recommender systems. In: UMAP, pp. 23–28. ACM, New York (2017). https://doi.org/10.1145/3099023.3099069

  13. Le Merrer, E., Trédan, G.: The topological face of recommendation. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds.) COMPLEX NETWORKS 2017 2017. SCI, vol. 689, pp. 897–908. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72150-7_72

    Chapter  Google Scholar 

  14. Lécuyer, M., et al.: XRay: enhancing the web’s transparency with differential correlation. In: USENIX Security Symposium, pp. 49–64 (2014)

    Google Scholar 

  15. Pan, W., Xiang, E.W., Liu, N.N., Yang, Q.: Transfer learning in collaborative filtering for sparsity reduction. In: AAAI (2010)

    Google Scholar 

  16. Polino, A., Pascanu, R., Alistarh, D.: Model compression via distillation and quantization. In: ICLR (2018)

    Google Scholar 

  17. IMDB via RapidAPI query limit. https://rapidapi.com/blog/how-to-use-imdb-api/

  18. Said, A., Bellogín, A.: Rival: a toolkit to foster reproducibility in recommender system evaluation. In: RecSys, pp. 371–372. ACM (2014)

    Google Scholar 

  19. Vartak, M., Thiagarajan, A., Miranda, C., Bratman, J., Larochelle, H.: A meta-learning perspective on cold-start recommendations for items. In: NIPS, pp. 6904–6914 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Damaskinos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Damaskinos, G., Guerraoui, R., Le Merrer, E., Neumann, C. (2021). The Imitation Game: Algorithm Selection by Exploiting Black-Box Recommenders. In: Georgiou, C., Majumdar, R. (eds) Networked Systems. NETYS 2020. Lecture Notes in Computer Science(), vol 12129. Springer, Cham. https://doi.org/10.1007/978-3-030-67087-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67087-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67086-3

  • Online ISBN: 978-3-030-67087-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics