Nothing Special   »   [go: up one dir, main page]

Skip to main content

AIM 2020 Challenge on Image Extreme Inpainting

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Abstract

This paper reviews the AIM 2020 challenge on extreme image inpainting. This report focuses on proposed solutions and results for two different tracks on extreme image inpainting: classical image inpainting and semantically guided image inpainting. The goal of track 1 is to inpaint large part of the image with no supervision. Similarly, the goal of track 2 is to inpaint the image by having access to the entire semantic segmentation map of the input. The challenge had 88 and 74 participants, respectively. 11 and 6 teams competed in the final phase of the challenge, respectively. This report gauges current solutions and set a benchmark for future extreme image inpainting methods.

E. Ntavelis (entavelis@ethz.ch, ETH Zurich and CSEM SA), A. Romero, S. Bigdeli, and R. Timofte are the AIM 2020 challenge organizers, while the other authors participated in the challenge.

Appendix A contains the authors’teams and affiliations.

AIM webpage: http://www.vision.ee.ethz.ch/aim20/.

Github webpage: https://github.com/vglsd/AIM2020-Image-Inpainting-Challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/tensorlayer/srgan.git.

References

  1. A tensorflow implementation of SRGAN. https://github.com/tensorlayer/srgan.git

  2. Alom, M.Z., Hasan, M., Yakopcic, C., Taha, T.M., Asari, V.K.: Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation. arXiv preprint arXiv:1802.06955 (2018)

  3. Bai, M., Li, S., Fan, J., Zhou, C., Zuo, L., Na, J., Jeong, M.: Fast light-weight network for extreme image inpainting challenge. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020 Workshops. LNCS, vol. 12537, pp.742–757 (2020)

    Google Scholar 

  4. Bau, D., et al.: Semantic photo manipulation with a generative image prior. ACM Trans. Graph. (Proc. ACM SIGGRAPH) 38(4), 1–11 (2019)

    Google Scholar 

  5. Caesar, H., Uijlings, J., Ferrari, V.: Coco-stuff: thing and stuff classes in context. In: CVPR (2018). https://arxiv.org/abs/1612.03716

  6. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  7. El Helou, M., Zhou, R., Süsstrunk, S., Timofte, R., et al.: AIM 2020: scene relighting and illumination estimation challenge. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020 Workshops. LNCS, vol. 12537, pp. 499–518 (2020)

    Google Scholar 

  8. Fritsche, M., Gu, S., Timofte, R.: Frequency separation for real-world super-resolution. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3599–3608. IEEE (2019)

    Google Scholar 

  9. Fuoli, D., Huang, Z., Gu, S., Timofte, R., et al.: AIM 2020 challenge on video extreme super-resolution: methods and results. In: European Conference on Computer Vision Workshops (2020)

    Google Scholar 

  10. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  11. Hong, S., Yan, X., Huang, T.E., Lee, H.: Learning hierarchical semantic image manipulation through structured representations. In: Advances in Neural Information Processing Systems, pp. 2713–2723 (2018)

    Google Scholar 

  12. Hui, Z., Li, J., Wang, X., Gao, X.: Image fine-grained inpainting. arXiv preprint arXiv:2002.02609 (2020)

  13. Ignatov, A., Timofte, R., et al.: AIM 2020 challenge on learned image signal processing pipeline. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020 Workshops. LNCS, vol. 12537, pp. 152–170 (2020)

    Google Scholar 

  14. Ignatov, A., Timofte, R., et al.: AIM 2020 challenge on rendering realistic bokeh. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020 Workshops. LNCS, vol. 12537, pp. 213–228 (2020)

    Google Scholar 

  15. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks (2016)

    Google Scholar 

  16. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  17. Li, C.T., Siu, W.C., Liu, Z.S., Wang, L.W., Lun, D.P.K.: DeepGIN: deep generative inpainting network for extreme image inpainting. In: European Conference on Computer Vision Workshops (2020)

    Google Scholar 

  18. Li, C., Wand, M.: Precomputed real-time texture synthesis with Markovian generative adversarial networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 702–716. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_43

    Chapter  Google Scholar 

  19. Lim, J.H., Ye, J.C.: Geometric GAN. arXiv preprint arXiv:1705.02894 (2017)

  20. Nazeri, K., Ng, E., Joseph, T., Qureshi, F., Ebrahimi, M.: EdgeConnect: structure guided image inpainting using edge prediction. In: The IEEE International Conference on Computer Vision (ICCV) Workshops, October 2019

    Google Scholar 

  21. Nazeri, K., Ng, E., Joseph, T., Qureshi, F.Z., Ebrahimi, M.: EdgeConnect: generative image inpainting with adversarial edge learning. arXiv preprint arXiv:1901.00212 (2019)

  22. Ntavelis, E., Romero, A., Kastanis, I., Van Gool, L., Timofte, R.: Sesame: semantic editing of scenes by adding, manipulating or erasing objects. In: Proceedings of the European Conference on Computer Vision (ECCV) (2020)

    Google Scholar 

  23. Ntavelis, E., Romero, A., Bigdeli, S.A., Timofte, R., et al.: AIM 2020 challenge on image extreme inpainting. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020 Workshops. LNCS, vol. 12537, pp. 716–741 (2020)

    Google Scholar 

  24. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: CVPR, pp. 2337–2346 (2019)

    Google Scholar 

  25. Shaker, N., Liapis, A., Togelius, J., Lopes, R., Bidarra, R.: Constructive generation methods for dungeons and levels. Procedural Content Generation in Games. CSCS, pp. 31–55. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42716-4_3

    Chapter  Google Scholar 

  26. Son, S., Lee, J., Nah, S., Timofte, R., Lee, K.M., et al.: AIM 2020 challenge on video temporal super-resolution. In: European Conference on Computer Vision Workshops (2020)

    Google Scholar 

  27. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_5

    Chapter  Google Scholar 

  28. Wei, P., Lu, H., Timofte, R., Lin, L., Zuo, W., et al.: AIM 2020 challenge on real image super-resolution : methods and results. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020 Workshops. LNCS, vol. 12537, pp. 392–422 (2020)

    Google Scholar 

  29. Xiangli, Y., Deng, Y., Dai, B., Loy, C.C., Lin, D.: Real or not real, that is the question. In: ICLR (2020)

    Google Scholar 

  30. Xu, D., Chu, Y., Sun, Q.: Moire pattern removal via attentive fractal network. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2020

    Google Scholar 

  31. Yi, Z., Tang, Q., Azizi, S., Jang, D., Xu, Z.: Contextual residual aggregation for ultra high-resolution image inpainting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7508–7517 (2020)

    Google Scholar 

  32. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5505–5514 (2018)

    Google Scholar 

  33. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4471–4480 (2019)

    Google Scholar 

  34. Zeng, Y., Lin, Z., Yang, J., Zhang, J., Shechtman, E., Lu, H.: High-resolution image inpainting with iterative confidence feedback and guided upsampling. In: European Conference on Computer Vision. Springer (2020)

    Google Scholar 

  35. Zhang, K., Danelljan, M., Li, Y., Timofte, R., et al.: AIM 2020 challenge on efficient super-resolution: Methods and results. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020 Workshops. LNCS, vol. 12537, pp. 5–40 (2020)

    Google Scholar 

  36. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2017)

    Article  Google Scholar 

  37. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20k dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 633–641 (2017)

    Google Scholar 

Download references

Acknowledgements

We thank the AIM 2020 sponsors: Huawei, MediaTek, Qualcomm AI Research, NVIDIA, Google and Computer Vision Lab/ETH Zürich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Ntavelis .

Editor information

Editors and Affiliations

Appendix A: Teams and affiliations

Appendix A: Teams and affiliations

1.1 AIM2020 organizers

Members: Evangelos Ntavelis1,2 (entavelis@ethz.ch), Siavash Bigdeli2 (siavash.bigdeli@csem.ch), Andrés Romero1 (roandres@ethz.ch), Radu Timofte1 (radu.timofte@vision.ee.ethz.ch).

Affiliations: 1Computer Vision Lab, ETH Zürich. 2CSEM.

1.2 Rainbow

Title: Image fine-grained inpainting.

Members: Zheng Hui, Xiumei Wang, Xinbo Gao.

Affiliations: School of Electronic Engineering, Xidian University.

1.3 Yonsei-MVPLab

Title: Image Inpainting based on Edge and Frequency Guided Recurrent Convolutions.

Members: Chajin Shin, Taeoh Kim, Hanbin Son, Sangyoun Lee.

Affiliations: Image and Video Pattern Recognition Lab., School of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea.

1.4 BossGao

Title: Image Inpainting With Mask Awareness

Members: Chao Li, Fu Li, Dongliang He, Shilei Wen, Errui Ding

Affiliations: Department of Computer Vision (VIS), Baidu Inc.

1.5 ArtIst

Title: Fast Light-Weight Network for Image Inpainting

Members: Mengmeng Bai, Shuchen Li

Affiliations: Samsung R&D Institute China-Beijing (SRC-Beijing)

1.6 DLUT

Title: Iterative Confidence Feedback and Guided Upsampling for filling large holes and inpainting high-resolution images

Members: Yu Zeng1, Zhe Lin2, Jimei Yang2, Jianming Zhang2, Eli Shechtman2, Huchuan Lu1

Affiliations: 1Dalian University of Technology, 2Adobe

1.7 AI-Inpainting Group

Title: MSEM: Multi-Scale Semantic-Edge Merged Model for Image Inpainting

Members: Weijian Zeng, Haopeng Ni, Yiyang Cai, Chenghua Li

Affiliations: Rensselaer Polytechnic Institute

1.8 qwq

Title: Markovian Discriminator guided Attentive Fractal Network

Members: Dejia Xu, Haoning Wu, Yu Han

Affiliations: Peking University

1.9 CVIP Inpainting Team

Title: Global Spatial-Channel Attention and Inter-layer GRU-based Image Inpainting

Members: Uddin S. M. Nadim, Hae Woong Jang, Soikat Hasan Ahmed, Jungmin Yoon, and Yong Ju Jung

Affiliations: Computer Vision and Image Processing (CVIP) Lab, Gachon University.

1.10 DeepInpaintingT1

Title: Deep Generative Inpainting Network for Extreme Image Inpainting

Members: Chu-Tak Li, Zhi-Song Liu, Li-Wen Wang, Wan-Chi Siu, Daniel P.K. Lun

Affiliations: Centre for Multimedia Signal Processing, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong

1.11 IPCV IITM

Title: Contextual Residual Aggregation Network

Members: Maitreya Suin, Kuldeep Purohit, A. N. Rajagopalan

Affiliations: Indian Institute of Technology Madras, India

1.12 MultiCog

Title: Pix2Pix for Image Inpainting

Members: Pratik Narang1, Murari Mandal2, Pranjal Singh Chauhan1

Affiliations: 1BITS Pilani, 2MNIT Jaipur

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ntavelis, E. et al. (2020). AIM 2020 Challenge on Image Extreme Inpainting. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12537. Springer, Cham. https://doi.org/10.1007/978-3-030-67070-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67070-2_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67069-6

  • Online ISBN: 978-3-030-67070-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics