Abstract
A photo captured with bokeh effect often means objects in focus are sharp while the out-of-focus areas are all blurred. DSLR can easily render this kind of effect naturally. However, due to the limitation of sensors, smartphones cannot capture images with depth-of-field effects directly. In this paper, we propose a novel generator called Glass-Net, which generates bokeh images not relying on complex hardware. Meanwhile, the GAN-based method and perceptual loss are combined for rendering a realistic bokeh effect in the stage of finetuning the model. Moreover, Instance Normalization(IN) is reimplemented in our network, which ensures our tflite model with IN can be accelerated on smartphone GPU. Experiments show that our method is able to render a high-quality bokeh effect and process one \(1024 \times 1536\) pixel image in 1.9 s on all smartphone chipsets. This approach ranked First in AIM 2020 Rendering Realistic Bokeh Challenge Track 1 & Track 2.
M. Qian—The work was done when Ming Qian was an intern at AiRiA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3722–3731 (2017)
Davis, H.: Practical Artistry: Light & Exposure for Digital Photographers. O’Reilly Media, Inc., Sebastopol (2008)
Dutta, S.: Depth-aware blending of smoothed images for bokeh effect generation. arXiv preprint arXiv:2005.14214 (2020)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Conference on Computer Vision and Pattern Recognition, pp. 770–778. IEEE (2016)
Hou, Q., Cheng, M.M., Hu, X., Borji, A., Tu, Z., Torr, P.H.: Deeply supervised salient object detection with short connections. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3203–3212 (2017)
Ignatov, A., Patel, J., Timofte, R.: Rendering natural camera bokeh effect with deep learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 418–419 (2020)
Ignatov, A., et al.: Aim 2019 challenge on bokeh effect synthesis: methods and results. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3591–3598. IEEE (2019)
Ignatov, A., Timofte, R., et al.: AIM 2020 challenge on rendering realistic bokeh. In: European Conference on Computer Vision Workshops (2020)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)
Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: DeblurGAN: blind motion deblurring using conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8183–8192 (2018)
Lee, J., et al.: On-device neural net inference with mobile GPUs. arXiv preprint arXiv:1907.01989 (2019)
Li, Z., Snavely, N.: MegaDepth: learning single-view depth prediction from internet photos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2041–2050 (2018)
Ma, C., Rao, Y., Cheng, Y., Chen, C., Lu, J., Zhou, J.: Structure-preserving super resolution with gradient guidance. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7769–7778 (2020)
Purohit, K., Suin, M., Kandula, P., Ambasamudram, R.: Depth-guided dense dynamic filtering network for bokeh effect rendering. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3417–3426. IEEE (2019)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Shen, X., et al.: Automatic portrait segmentation for image stylization. In: Computer Graphics Forum, vol. 35, pp. 93–102. Wiley Online Library (2016)
Shen, X., Tao, X., Gao, H., Zhou, C., Jia, J.: Deep automatic portrait matting. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 92–107. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_6
Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)
Wadhwa, N., et al.: Synthetic depth-of-field with a single-camera mobile phone. ACM Trans. Graph. (TOG) 37(4), 1–13 (2018)
Zhu, B., Chen, Y., Wang, J., Liu, S., Zhang, B., Tang, M.: Fast deep matting for portrait animation on mobile phone. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 297–305 (2017)
Acknowledgements
This work was supported by the Advance Research Program (31511130301); National Key Research and Development Program (2017YFF0209806), and National Natural Science Foundation of China (No. 61906193; No. 61906195; No. 61702510).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Qian, M. et al. (2020). BGGAN: Bokeh-Glass Generative Adversarial Network for Rendering Realistic Bokeh. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12537. Springer, Cham. https://doi.org/10.1007/978-3-030-67070-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-67070-2_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-67069-6
Online ISBN: 978-3-030-67070-2
eBook Packages: Computer ScienceComputer Science (R0)