Abstract
Automatic classification of epileptic seizure types in electroencephalograms (EEGs) data can enable more precise diagnosis and efficient management of the disease. This task is challenging due to factors such as low signal-to-noise ratios, signal artefacts, high variance in seizure semiology among epileptic patients, and limited availability of clinical data. To overcome these challenges, in this paper, we present SeizureNet, a deep learning framework which learns multi-spectral feature embeddings using an ensemble architecture for cross-patient seizure type classification. We used the recently released TUH EEG Seizure Corpus (V1.4.0 and V1.5.2) to evaluate the performance of SeizureNet. Experiments show that SeizureNet can reach a weighted F1 score of up to 0.95 for seizure-wise cross validation and 0.62 for patient-wise cross validation for scalp EEG based multi-class seizure type classification. We also show that the high-level feature embeddings learnt by SeizureNet considerably improve the accuracy of smaller networks through knowledge distillation for applications with low-memory constraints.
S. Roy now with Google.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
In this work, we used \({F}=[24,48,64,96]\) Hz, \(\mathcal {W}=[1]\) second, and \(\mathcal {O}=[0.5, 1.0]\) seconds.
References
Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adeli, H.: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. 100, 270–278 (2018)
Ahmedt-Aristizabal, D., Fernando, T., Denman, S., Petersson, L., Aburn, M.J., Fookes, C.: Neural memory networks for robust classification of seizure type. arXiv preprint arXiv:1912.04968 (2019)
Alotaiby, T.N., Alshebeili, S.A., Alshawi, T., Ahmad, I., El-Samie, F.E.A.: EEG seizure detection and prediction algorithms: a survey. EURASIP J. Adv. Signal Process. 2014(1), 183 (2014)
Antoniades, A., Spyrou, L., Took, C.C., Sanei, S.: Deep learning for epileptic intracranial EEG data. In: 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2016)
Boubchir, L., Al-Maadeed, S., Bouridane, A.: On the use of time-frequency features for detecting and classifying epileptic seizure activities in non-stationary EEG signals. In: ICASSP, pp. 5889–5893. IEEE (2014)
Golmohammadi, M., et al.: Gated recurrent networks for seizure detection. In: 2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), pp. 1–5. IEEE (2017)
Hao, Y., Khoo, H.M., von Ellenrieder, N., Zazubovits, N., Gotman, J.: DeepIED: an epileptic discharge detector for EEG-fMRI based on deep learning. NeuroImage Clinical 17, 962–975 (2018)
Harrer, S., Shah, P., Antony, B., Hu, J.: Artificial intelligence for clinical trial design. Trends Pharmacol. Sci. 40(8), 577–591 (2019)
Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: CVPR, pp. 1–8 (2007)
Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected convolutional networks. In: CVPR (2017)
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. PAMI 11, 1254–1259 (1998)
Längkvist, M., Karlsson, L., Loutfi, A.: A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recogn. Lett. 42, 11–24 (2014)
Lin, Q., et al.: Classification of epileptic EEG signals with stacked sparse autoencoder based on deep learning. In: Huang, D.-S., Han, K., Hussain, A. (eds.) ICIC 2016. LNCS (LNAI), vol. 9773, pp. 802–810. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42297-8_74
Lopez, S., Gross, A., Yang, S., Golmohammadi, M., Obeid, I., Picone, J.: An analysis of two common reference points for EEGS. In: 2016 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), pp. 1–5. IEEE (2016)
Montabone, S., Soto, A.: Human detection using a mobile platform and novel features derived from a visual saliency mechanism. Image Vis. Comput. 28(3), 391–402 (2010)
O’Shea, A., Lightbody, G., Boylan, G., Temko, A.: Investigating the impact of CNN depth on neonatal seizure detection performance. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5862–5865. IEEE (2018)
Paszke, A., et al.: Automatic differentiation in PyTorch (2017)
Pramod, S., Page, A., Mohsenin, T., Oates, T.: Detecting epileptic seizures from EEG data using neural networks. arXiv preprint arXiv:1412.6502 (2014)
Roy, S., Asif, U., Tang, J., Harrer, S.: Machine learning for seizure type classification: setting the benchmark. arXiv preprint arXiv:1902.01012 (2019)
Saputro, I.R.D., Maryati, N.D., Solihati, S.R., Wijayanto, I., Hadiyoso, S., Patmasari, R.: Seizure type classification on EEG signal using support vector machine. J. Phys. Conf. Ser. 1201, 012065. IOP Publishing (2019)
Shah, V., et al.: The temple university hospital seizure detection corpus. Front. Neuroinformatics 12, 83 (2018)
Silverman, D.: The rationale and history of the 10–20 system of the international federation. Am. J. EEG Technol. 3(1), 17–22 (1963)
Sriraam, N., Temel, Y., Rao, S.V., Kubben, P.L., et al.: A convolutional neural network based framework for classification of seizure types. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2547–2550. IEEE (2019)
Supratak, A., Li, L., Guo, Y.: Feature extraction with stacked autoencoders for epileptic seizure detection. In: EMBC, pp. 4184–4187. IEEE (2014)
Thodoroff, P., Pineau, J., Lim, A.: Learning robust features using deep learning for automatic seizure detection. In: Machine Learning for Healthcare Conference, pp. 178–190 (2016)
Tsiouris, K.M., Pezoulas, V.C., Zervakis, M., Konitsiotis, S., Koutsouris, D.D., Fotiadis, D.I.: A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals. Comput. Biol. Med. 99, 24–37 (2018)
Turner, J., Page, A., Mohsenin, T., Oates, T.: Deep belief networks used on high resolution multichannel electroencephalography data for seizure detection. In: 2014 AAAI Spring Symposium Series (2014)
Vidyaratne, L., Glandon, A., Alam, M., Iftekharuddin, K.M.: Deep recurrent neural network for seizure detection. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 1202–1207 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Asif, U., Roy, S., Tang, J., Harrer, S. (2020). SeizureNet: Multi-Spectral Deep Feature Learning for Seizure Type Classification. In: Kia, S.M., et al. Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology. MLCN RNO-AI 2020 2020. Lecture Notes in Computer Science(), vol 12449. Springer, Cham. https://doi.org/10.1007/978-3-030-66843-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-66843-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-66842-6
Online ISBN: 978-3-030-66843-3
eBook Packages: Computer ScienceComputer Science (R0)