Nothing Special   »   [go: up one dir, main page]

Skip to main content

Performance of Coronary Plaque Feature Extraction and Identification of Plaque Severity for Intravascular Ultrasound B-Mode Images

  • Conference paper
  • First Online:
Mining Intelligence and Knowledge Exploration (MIKE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11987))

Abstract

The process of extraction of blood vessel boundaries in the case of Intravascular Ultrasound (IVUS) images is extremely indispensable in the quantitative examination of cardiovascular functions. The affected region of plaque in the IVUS image has to be measured quantitatively to fix the stent challenges. In this paper, the lumen and coronary plaque feature extraction are done by the adjacent pattern method. To get appropriate features, sequential feature selection is carried out and directed with the assistance of the area under the precision and recall value. Subsets of appropriate image characteristics for lumen, plaque, and adjoining tissue characterization acquired are trained with the assistance of Support Vector Machine (SVM) based Convolution neural network (CNN). These features were able to accurately recognize plaque regions of the predicted class label based on the weighted matrix and display the plaque severity level. The proposed SVM based CNN classifier is compared with CNN-Basic and SVM classifier and the performance of feature extraction and classification methods are evaluated with quantifiable metrics like true positive (TP), true negative (TN), false positive (FP) and false negative (FN). The performance of plaque feature detection evaluated with quantitative values for accuracy, sensitivity, specificity, precision, recall, and F-score.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mojsilovic, A., Popovic, M., Amodaj, N., Babic, R., Ostojic, M.: Automatic segmentation of intravascular ultrasound images: a texture-based approach ease. Ann. Biomed. Eng. 25, 1059–1071 (1997)

    Article  Google Scholar 

  2. Gil, D., Hernandez, A., Rodriguez, O., Mauri, J., Radeva, P.: Statistical strategy for anisotropic adventitia modelling in IVUS. IEEE Trans. Med. Imaging 25(6), 768–778 (2006)

    Article  Google Scholar 

  3. Frostegard, J.: SLE, atherosclerosis and cardiovascular disease. J. Intern. Med. 257, 13652796 (2005)

    Article  Google Scholar 

  4. Lee, H., Grosse, R., Ranganath, R., Ng, A.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th Annual International Conference on Machine Learning, p. 609–616 (2009)

    Google Scholar 

  5. Shiddieqy, H.A., Hariadi, F.I., Adiono, T.: Implementation of deep-learning based image classification on single board computer. In: International Symposium on Electronics and Smart Devices (ISESD), pp. 133–137 (2017)

    Google Scholar 

  6. Caballero, K.L., Barajas, J., Pujol, O., Rodriguez, O., Radeva, P.: Using reconstructed IVUS images for coronary plaque classification. In: IEEE, pp. 2167–2170 (2007)

    Google Scholar 

  7. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)

    Article  Google Scholar 

  8. Lo Vercio, L., Orlando, J.I., del Fresno, M., Larrabide, I.: Assessment of image features for vessel wall segmentation in intravascular ultrasound images. Int. J. Comput. Assist. Radiol. Surg. 11(8), 1397–1407 (2016). https://doi.org/10.1007/s11548-015-1345-4

    Article  Google Scholar 

  9. Mahadevi, C., Sivakumar, D.S.: Evaluation of segmentation algorithms for the detection of plaque border and wall cross-sectional area in b-mode intravascular ultrasound images. J. Int. Pharm. Res. 46(4), 388–397 (2019)

    Google Scholar 

  10. Mendizabal-Ruiz, E.G., Rivera, M., Kakadiaris, I.A.: Robust segmentation of the luminal border in intravascular ultrasound using a probabilistic approach. Technical Report UH-CS-11-02, University of Houston, Houston, TX, USA (2011)

    Google Scholar 

  11. Mesejo, P., Ibanez, O., Cordon, O., Cagnoni, S.: A survey on image segmentation using meta heuristic-based deformable models: state of the art and critical analysis. Appl. Soft Comput. 44, 129 (2016)

    Article  Google Scholar 

  12. Taki, A., Roodaki, A., Setarehdan, S.K., Avansari, S., Unal, G., Navab, N.: An IVUs image-based approach for improvement of coronary plaque characterization. Comput. Biol. Med. 43, 268–280 (2013)

    Article  Google Scholar 

  13. Pazinato, D.V., et al.: Pixel-level tissue classification for ultrasound images. IEEE J. Biomed. Health Inform. 20, 256–267 (2016)

    Article  Google Scholar 

  14. Rotger, D., Radeva, P., Fernández-Nofrerías, E., Mauri, J.: Blood detection in IVUS images for 3D volume of lumen changes measurement due to different drugs administration. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 285–292. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74272-2_36

    Chapter  MATH  Google Scholar 

  15. Sridevi, S., Sundaresan, M.: Hybrid feature extraction techniques for accuracy improvement in IVUS image classification. Int. J. Sci. Technol. Res. 9(4), 720–724 (2020)

    Google Scholar 

  16. Turaga, S.C., et al.: Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput. 22(2), 511–538 (2010)

    Article  Google Scholar 

  17. Dehnavi, S.M., Babu, M.P., Yazchi, M., Basij, M.: Automatic soft and hard plaque detection in IVUS images: a textural approach. In: IEEE Conference on Information and Communication Technologies (ICT 2013), pp. 214–219. IEEE (2013)

    Google Scholar 

  18. Su, S., Hu, Z., Lin, Q., Hau, W.K., Gao, Z., Zhang, H.: An artificial neural network method for lumen and media-adventitia border detection in IVUS. Comput. Med. Imaging Graph. 57, 29–39 (2017)

    Article  Google Scholar 

  19. Giannoglou, V.G., Theocharis, J.B.: Decision fusion of multiple classifiers for coronary plaque characterization from IVUS images. Int. J. Artif. Intell. Tools 23, 1460005 (2014)

    Article  Google Scholar 

  20. LeCun, Y., Huang, F.J., Bottou, L.: Learning methods for generic object recognition with invariance to pose and lighting. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, p. II97 (2004)

    Google Scholar 

  21. Zhang, L., Jing, J., Zhang, H.: Fabric defect classification based on LBP and GLCM. Appl. Soft Comput. 8, 81–89 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Mahadevi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahadevi, C., Sivakumar, S. (2020). Performance of Coronary Plaque Feature Extraction and Identification of Plaque Severity for Intravascular Ultrasound B-Mode Images. In: B. R., P., Thenkanidiyoor, V., Prasath, R., Vanga, O. (eds) Mining Intelligence and Knowledge Exploration. MIKE 2019. Lecture Notes in Computer Science(), vol 11987. Springer, Cham. https://doi.org/10.1007/978-3-030-66187-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66187-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66186-1

  • Online ISBN: 978-3-030-66187-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics