Nothing Special   »   [go: up one dir, main page]

Skip to main content

Sequential Anomaly Detection Using Feedback and Prioritized Experience Replay

  • Conference paper
  • First Online:
Network and System Security (NSS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12570))

Included in the following conference series:

  • 1450 Accesses

Abstract

Time series anomaly detection is essential because it helps in identifying faulty sensors and malicious behaviour in real-time. Most of the research work on anomaly detection revolves around density-based unsupervised learning techniques for batch data and forecasting (threshold-based) techniques for streaming data. Typically in streaming data, we continuously encounter concept drifts due to which the forecasting approaches’ threshold becomes insignificant with time. Also, forecasting techniques cannot identify sequential anomalies, as they try to forecast as per the ingested data. The reason behind less implementations using supervised learning for anomaly detection is because of the class imbalance problem in the dataset and unavailability of the labels. Most of the anomaly datasets contain 5% outliers due to which any learning model will overfit on normal data class and will not be able to learn about the anomalous class. In this work, we address these issues using Prioritized Experience Replay and introduce a novel state function which incorporates feedback to identify sequential anomalies. We evaluate our model on the Yahoo benchmark dataset, which contains 367 time-series datasets (each testing different aspects of anomaly detection), four smart home energy datasets and Numenta Anomaly benchmark datasets consisting of 58 time series data. The paper exhibits better performance of the proposed approach over the baseline approaches across different anomaly datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The terms outliers and anomalies have been used interchangeably in this work.

References

  1. Adams, R.P., MacKay, D.J.: Bayesian online changepoint detection. arXiv preprint arXiv:0710.3742 (2007)

  2. Ahmad, S., Hawkins, J.: Properties of sparse distributed representations and their application to hierarchical temporal memory. arXiv preprint arXiv:1503.07469 (2015)

  3. Ahmad, S., Lavin, A., Purdy, S., Agha, Z.: Unsupervised real-time anomaly detection for streaming data. Neurocomputing 262, 134–147 (2017)

    Article  Google Scholar 

  4. Arshad, R., Zahoor, S., Shah, M.A., Wahid, A., Yu, H.: Green IoT An investigation on energy saving practices for 2020 and beyond. IEEE Access 5, 15667–15681 (2017)

    Article  Google Scholar 

  5. Beckel, C., Kleiminger, W., Cicchetti, R., Staake, T., Santini, S.: The eco data set and the performance of non-intrusive load monitoring algorithms. In: Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings, pp. 80–89 (2014)

    Google Scholar 

  6. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD international conference on Management of data, pp. 93–104 (2000)

    Google Scholar 

  7. Detector, C.A.: Contextose (2015). https://github.com/smirmik/CAD

  8. Faker, O., Dogdu, E.: Intrusion detection using big data and deep learning techniques. In: Proceedings of the 2019 ACM Southeast Conference, pp. 86–93 (2019)

    Google Scholar 

  9. Fiore, U., De Santis, A., Perla, F., Zanetti, P., Palmieri, F.: Using generative adversarial networks for improving classification effectiveness in credit card fraud detection. Inf. Sci. 479, 448–455 (2019)

    Article  Google Scholar 

  10. Kejariwal, A.: Twitter engineering: Introducing practical and robust anomaly detection in a time series (2015)

    Google Scholar 

  11. Laptev, N., Amizadeh, S.: Yahoo anomaly detection dataset s5 (2015). http://webscopesandbox.yahoo.com/catalog.php

  12. Laptev, N., Amizadeh, S., Flint, I.: Generic and scalable framework for automated time-series anomaly detection. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1939–1947 (2015)

    Google Scholar 

  13. Lavin, A., Ahmad, S.: Evaluating real-time anomaly detection algorithms-the numenta anomaly benchmark. In: 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), pp. 38–44. IEEE (2015)

    Google Scholar 

  14. Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A., Lloret, J.: Network traffic classifier with convolutional and recurrent neural networks for internet of things. IEEE Access 5, 18042–18050 (2017)

    Article  Google Scholar 

  15. Ma, Z., Ge, H., Liu, Y., Zhao, M., Ma, J.: A combination method for android malware detection based on control flow graphs and machine learning algorithms. IEEE Access 7, 21235–21245 (2019)

    Article  Google Scholar 

  16. Makonin, S., Ellert, B., Bajić, I.V., Popowich, F.: Electricity, water, and natural gas consumption of a residential house in Canada from 2012 to 2014. Sci. Data 3, 160037 (2016)

    Article  Google Scholar 

  17. Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., Shroff, G.: Lstm-based encoder-decoder for multi-sensor anomaly detection (2016). arXiv preprint arXiv:1607.00148

  18. Munir, M., Siddiqui, S.A., Chattha, M.A., Dengel, A., Ahmed, S.: Fusead: unsupervised anomaly detection in streaming sensors data by fusing statistical and deep learning models. Sensors 19(11), 2451 (2019)

    Article  Google Scholar 

  19. Munir, M., Siddiqui, S.A., Dengel, A., Ahmed, S.: Deepant: a deep learning approach for unsupervised anomaly detection in time series. IEEE Access 7, 1991–2005 (2018)

    Article  Google Scholar 

  20. Murray, D., Stankovic, L., Stankovic, V.: An electrical load measurements dataset of united kingdom households from a two-year longitudinal study. Sci. Data 4(1), 1–12 (2017)

    Article  Google Scholar 

  21. Papadimitriou, S., Kitagawa, H., Gibbons, P.B., Faloutsos, C.: Loci: Fast outlier detection using the local correlation integral. In: Proceedings 19th International Conference on Data Engineering (Cat. No. 03CH37405), pp. 315–326. IEEE (2003)

    Google Scholar 

  22. Qiu, J., Du, Q., Qian, C.: KPI-TSAD: A time-series anomaly detector for KPI monitoring in cloud applications. Symmetry 11(11), 1350 (2019)

    Article  Google Scholar 

  23. Rashid, H., Batra, N., Singh, P.: Rimor: towards identifying anomalous appliances in buildings. In: Proceedings of the 5th Conference on Systems for Built Environments, pp. 33–42 (2018)

    Google Scholar 

  24. Rosner, B.: Percentage points for a generalized ESD many-outlier procedure. Technometrics 25(2), 165–172 (1983)

    Article  Google Scholar 

  25. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. arXiv preprint arXiv:1511.05952 (2015)

  26. Schneider, M., Ertel, W., Ramos, F.: Expected similarity estimation for large-scale batch and streaming anomaly detection. Mach. Learn. 105(3), 305–333 (2016)

    Article  MathSciNet  Google Scholar 

  27. Stanway, A.: Etsy skyline. Online Code Repos (2013)

    Google Scholar 

  28. Street, P.: Dataport: the world’s largest energy data resource. Pecan Street Inc (2015)

    Google Scholar 

  29. Sun, W., Paiva, A.R., Xu, P., Sundaram, A., Braatz, R.D.: Fault detection and identification using bayesian recurrent neural networks. arXiv preprint arXiv:1911.04386 (2019)

  30. Tietjen, G.L., Moore, R.H.: Some grubbs-type statistics for the detection of several outliers. Technometrics 14(3), 583–597 (1972)

    Article  Google Scholar 

  31. Vallis, O., Hochenbaum, J., Kejariwal, A.: A novel technique for long-term anomaly detection in the cloud. In: 6th \(\{\)USENIX\(\}\) Workshop on Hot Topics in Cloud Computing (HotCloud 14) (2014)

    Google Scholar 

  32. Wang, C., Viswanathan, K., Choudur, L., Talwar, V., Satterfield, W., Schwan, K.: Statistical techniques for online anomaly detection in data centers. In: 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops, pp. 385–392. IEEE (2011)

    Google Scholar 

  33. Xu, H., et al.: Unsupervised anomaly detection via variational auto-encoder for seasonal KPIS in web applications. In: Proceedings of the 2018 World Wide Web Conference, pp. 187–196 (2018)

    Google Scholar 

  34. Yamanaka, Y., Iwata, T., Takahashi, H., Yamada, M., Kanai, S.: Autoencoding binary cassifiers for supervised anomaly detection. In: Nayak, A.C., Sharma, A. (eds.) PRICAI 2019. LNCS (LNAI), vol. 11671, pp. 647–659. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29911-8_50

    Chapter  Google Scholar 

  35. Zong, B., et al.: Deep autoencoding Gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanket Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ellore, A.R., Mishra, S., Hota, C. (2020). Sequential Anomaly Detection Using Feedback and Prioritized Experience Replay. In: Kutyłowski, M., Zhang, J., Chen, C. (eds) Network and System Security. NSS 2020. Lecture Notes in Computer Science(), vol 12570. Springer, Cham. https://doi.org/10.1007/978-3-030-65745-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65745-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65744-4

  • Online ISBN: 978-3-030-65745-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics