Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learning and Planning in the Feature Deception Problem

  • Conference paper
  • First Online:
Decision and Game Theory for Security (GameSec 2020)

Abstract

Today’s high-stakes adversarial interactions feature attackers who constantly breach the ever-improving security measures. Deception mitigates the defender’s loss by misleading the attacker to make suboptimal decisions. In order to formally reason about deception, we introduce the feature deception problem (FDP), a domain-independent model and present a learning and planning framework for finding the optimal deception strategy, taking into account the adversary’s preferences which are initially unknown to the defender. We make the following contributions. (1) We show that we can uniformly learn the adversary’s preferences using data from a modest number of deception strategies. (2) We propose an approximation algorithm for finding the optimal deception strategy given the learned preferences and show that the problem is NP-hard. (3) We perform extensive experiments to validate our methods and results. In addition, we provide a case study of the credit bureau network to illustrate how FDP implements deception on a real-world problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Typically, the loss \(u_{i}\) is non-negative, but it might be negative if, for example, the target is set up as a decoy or honeypot, and allows the defender to gain information about the attacker.

  2. 2.

    Refer to the proof of Theorem 1 for the notations used.

  3. 3.

    The full version of the paper is available at https://arxiv.org/abs/1905.04833.

References

  1. Abbasi, Y., et al.: Know your adversary: insights for a better adversarial behavioral model. In: CogSci (2016)

    Google Scholar 

  2. Albanese, M., Battista, E., Jajodia, S.: Deceiving attackers by creating a virtual attack surface. In: Jajodia, S., Subrahmanian, V.S.S., Swarup, V., Wang, C. (eds.) Cyber Deception, pp. 169–201. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32699-3_8

    Chapter  Google Scholar 

  3. Blum, A., Haghtalab, N., Procaccia, A.D.: Learning optimal commitment to overcome insecurity. In: NIPS (2014)

    Google Scholar 

  4. Chiang, C.Y.J., et al.: ACyDS: An adaptive cyber deception system. In: MILCOM (2016)

    Google Scholar 

  5. Fang, F., Stone, P., Tambe, M.: When security games go green: designing defender strategies to prevent poaching and illegal fishing. In: IJCAI (2015)

    Google Scholar 

  6. Gan, J., Xu, H., Guo, Q., Tran-Thanh, L., Rabinovich, Z., Wooldridge, M.: Imitative follower deception in Stackelberg games. In: EC (2019)

    Google Scholar 

  7. Guo, Q., An, B., Bosanskỳ, B., Kiekintveld, C.: Comparing strategic secrecy and Stackelberg commitment in security games. In: IJCAI, pp. 3691–3699 (2017)

    Google Scholar 

  8. Haghtalab, N., Fang, F., Nguyen, T.H., Sinha, A., Procaccia, A.D., Tambe, M.: Three strategies to success: learning adversary models in security games. In: IJCAI (2016)

    Google Scholar 

  9. Horák, K., Zhu, Q., Bošanskỳ, B.: Manipulating adversary’s belief: a dynamic game approach to deception by design for proactive network security. In: Rass, S., An, B., Kiekintveld, C., Fang, F., Schauer, S. (eds.) GameSec 2017. Lecture Notes in Computer Science, vol. 10575, pp. 273–294. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68711-7_15

    Chapter  Google Scholar 

  10. Hurlburt, G.: “Good enough” security: the best we’ll ever have. Computer 49, 98–101 (2016)

    Article  Google Scholar 

  11. Jafarian, J.H., Al-Shaer, E., Duan, Q.: Openflow random host mutation: transparent moving target defense using software defined networking. In: Proceedings of the First Workshop on Hot Topics in Software Defined Networks. ACM (2012)

    Google Scholar 

  12. Jajodia, S., et al.: A probabilistic logic of cyber deception. IEEE Trans. Inf. Forensics Secur. 12(11), 2532–2544 (2017)

    Article  Google Scholar 

  13. Jajodia, S., Subrahmanian, V., Swarup, V., Wang, C.: Cyber Deception. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-32699-3

    Book  Google Scholar 

  14. Latimer, J.: Deception in War. John Murray, London (2001)

    Google Scholar 

  15. Letchford, J., Conitzer, V., Munagala, K.: Learning and approximating the optimal strategy to commit to. In: Mavronicolas, M., Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp. 250–262. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04645-2_23

    Chapter  Google Scholar 

  16. Lyon, G.F.: Nmap network scanning: The Official Nmap Project Guide to Network Discovery and Security Scanning. Insecure (2009)

    Google Scholar 

  17. Marecki, J., Tesauro, G., Segal, R.: Playing repeated Stackelberg games with unknown opponents. In: AAMAS (2012)

    Google Scholar 

  18. Nakashima, E.: To thwart hackers, firms salting their servers with fake data (2013)

    Google Scholar 

  19. Nguyen, T.H., Wang, Y., Sinha, A., Wellman, M.P.: Deception in finitely repeated security games. In: AAAI (2019)

    Google Scholar 

  20. Paruchuri, P., Pearce, J.P., Marecki, J., Tambe, M., Ordonez, F., Kraus, S.: Playing games for security: an efficient exact algorithm for solving Bayesian Stackelberg games. In: AAMAS (2008)

    Google Scholar 

  21. Peng, B., Shen, W., Tang, P., Zuo, S.: Learning optimal strategies to commit to. In: AAAI (2019)

    Google Scholar 

  22. Perrault, A., Wilder, B., Ewing, E., Mate, A., Dilkina, B., Tambe, M.: Decision-focused learning of adversary behavior in security games. arXiv preprint arXiv:1903.00958 (2019)

  23. Potter, B., Day, G.: The effectiveness of anti-malware tools. Comput. Fraud Secur. 2009, 12–13 (2009)

    Article  Google Scholar 

  24. Provos, N., et al.: A virtual honeypot framework. In: USENIX Security Symposium (2004)

    Google Scholar 

  25. PwC: Operation Cloud Hopper Technical Annex

    Google Scholar 

  26. Rowe, N.C.: Deception in defense of computer systems from cyber attack. In: Cyber Warfare and Cyber Terrorism. IGI Global (2007)

    Google Scholar 

  27. Schlenker, A., et al.: Deceiving cyber adversaries: a game theoretic approach. In: AAMAS (2018)

    Google Scholar 

  28. Shamsi, Z., Nandwani, A., Leonard, D., Loguinov, D.: Hershel: single-packet OS fingerprinting. ACM SIGMETRICS Perform. Eval. Rev. 42, 195–206 (2014)

    Article  Google Scholar 

  29. Sinha, A., Kar, D., Tambe, M.: Learning adversary behavior in security games: A pac model perspective. In: AAMAS (2016)

    Google Scholar 

  30. Spitzner, L.: The honeynet project: trapping the hackers. IEEE Secur. Priv. 1, 15–23 (2003)

    Article  Google Scholar 

  31. Stancu-Minasian, I.M.: Fractional Programming: Theory, Methods and Applications, vol. 409. Springer, Heidelberg (2012). https://doi.org/10.1007/978-94-009-0035-6

    Book  MATH  Google Scholar 

  32. Wang, W., Zeng, B.: A two-stage deception game for network defense. In: GameSec (2018)

    Google Scholar 

  33. Yang, R., Ford, B., Tambe, M., Lemieux, A.: Adaptive resource allocation for wildlife protection against illegal poachers. In: AAMAS (2014)

    Google Scholar 

  34. Yang, R., Ordonez, F., Tambe, M.: Computing optimal strategy against quantal response in security games. In: AAMAS (2012)

    Google Scholar 

  35. Yin, Y., An, B., Vorobeychik, Y., Zhuang, J.: Optimal deceptive strategies in security games: a preliminary study. In: AAAI Symposium on Applied Computational Game Theory (2014)

    Google Scholar 

Download references

Acknowledgments

This research was sponsored by the Combat Capabilities Development Command Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-13-2-0045 (ARL Cyber Security CRA). The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Combat Capabilities Development Command Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes not withstanding any copyright notation here on.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheyuan Ryan Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, Z.R. et al. (2020). Learning and Planning in the Feature Deception Problem. In: Zhu, Q., Baras, J.S., Poovendran, R., Chen, J. (eds) Decision and Game Theory for Security. GameSec 2020. Lecture Notes in Computer Science(), vol 12513. Springer, Cham. https://doi.org/10.1007/978-3-030-64793-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64793-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64792-6

  • Online ISBN: 978-3-030-64793-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics