Nothing Special   »   [go: up one dir, main page]

Skip to main content

Iterative Closest Point with Minimal Free Space Constraints

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12510))

Included in the following conference series:

  • 1841 Accesses

Abstract

The Iterative Closest Point (ICP) method is widely used for fitting geometric models to sensor data. By formulating the problem as a minimization of distances evaluated at observed surface points, the method is computationally efficient and applicable to a rich variety of model representations. However, when the scene surface is only partially visible, the model can be ill-constrained by surface observations alone. Existing methods that penalize free space violations may resolve this issue, but require that the explicit model surface is available or can be computed quickly, to remain efficient. We introduce an extension of ICP that integrates free space constraints, while the number of distance computations remains linear in the scene’s surface area. We support arbitrary shape spaces, requiring only that the distance to the model surface can be computed at a given point. We describe an implementation for range images and validate our method on implicit model fitting problems that benefit from the use of free space constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)

    Article  Google Scholar 

  2. Solina, F., Bajcsy, R.: Recovery of parametric models from range images: the case for superquadrics with global deformations. IEEE Trans. Pattern Anal. Mach. Intell. 12, 131–147 (1990)

    Article  Google Scholar 

  3. Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. Int. J. Comput. Vis. 38, 199–218 (2000)

    Article  Google Scholar 

  4. Ganapathi, V., Plagemann, C., Koller, D., Thrun, S.: Real-time human pose tracking from range data. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 738–751. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_53

    Chapter  Google Scholar 

  5. Schmidt, T., Newcombe, R.A., Fox, D.: DART: dense articulated real-time tracking. In: Robotics: Science and Systems (2014)

    Google Scholar 

  6. Tagliasacchi, A., Schröder, M., Tkach, A., Bouaziz, S., Botsch, M., Pauly, M.: Robust articulated-ICP for real-time hand tracking. In: Computer Graphics Forum, Vol. 34, pp. 101–114. Wiley Online Library (2015)

    Google Scholar 

  7. Tkach, A., Pauly, M., Tagliasacchi, A.: Sphere-meshes for real-time hand modeling and tracking. ACM Trans. Graph. (ToG) 35, 1–11 (2016)

    Article  Google Scholar 

  8. Tam, G.K., et al.: Registration of 3D point clouds and meshes: a survey from rigid to nonrigid. IEEE Trans. Visual. Comput. Graph. 19, 1199–1217 (2012)

    Article  Google Scholar 

  9. Zhou, Q.-Y., Park, J., Koltun, V.: Fast global registration. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 766–782. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_47

    Chapter  Google Scholar 

  10. Yang, J., Li, H., Campbell, D., Jia, Y.: Go-ICP: a globally optimal solution to 3D ICP point-set registration. IEEE Trans. Pattern Anal. Mach. Intell. 38, 2241–2254 (2016)

    Article  Google Scholar 

  11. Yang, H., Carlone, L.: In perfect shape: certifiably optimal 3D shape reconstruction from 2d landmarks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 621–630 (2020)

    Google Scholar 

  12. Zhou, X., Zhu, M., Leonardos, S., Daniilidis, K.: Sparse representation for 3D shape estimation: a convex relaxation approach. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1648–1661 (2016)

    Article  Google Scholar 

  13. Hart, J.C.: Sphere tracing: a geometric method for the antialiased ray tracing of implicit surfaces. Visual Comput. 12, 527–545 (1996)

    Article  Google Scholar 

  14. Barr, A.H.: Global and local deformations of solid primitives. In: SIGGRAPH, pp. 21–30. ACM (1984)

    Google Scholar 

  15. Pasko, A., Adzhiev, V., Sourin, A., Savchenko, V.: Function representation in geometric modeling: concepts, implementation and applications. Visual Comput. 11, 429–446 (1995)

    Article  Google Scholar 

  16. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: SIGGRAPH, pp. 303–312. ACM (1996)

    Google Scholar 

  17. Newcombe, R.A., et al.: Kinectfusion: real-time dense surface mapping and tracking. In: ISMAR, pp. 127–136. IEEE (2011)

    Google Scholar 

  18. Jones, M.W., Baerentzen, J.A., Sramek, M.: 3D distance fields: a survey of techniques and applications. IEEE Trans. Visual. Comput. Graph. 12, 581–599 (2006)

    Article  Google Scholar 

  19. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: learning continuous signed distance functions for shape representation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)

    Google Scholar 

  20. Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vis. Comput. 10, 145–155 (1992)

    Article  Google Scholar 

  21. Fitzgibbon, A.W.: Robust registration of 2D and 3D point sets. Image Vis. Comput. 21, 1145–1153 (2003)

    Article  Google Scholar 

  22. Mitra, N.J., Gelfand, N., Pottmann, H., Guibas, L.: Registration of point cloud data from a geometric optimization perspective. In: Symposium on Geometry Processing, pp. 22–31. ACM (2004)

    Google Scholar 

  23. Pottmann, H., Huang, Q.X., Yang, Y.L., Hu, S.M.: Geometry and convergence analysis of algorithms for registration of 3D shapes. Int. J. Comput. Vis. 67, 277–296 (2006)

    Article  Google Scholar 

  24. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: International Conference on 3D Digital Imaging and Modeling, pp. 145–152 (2001)

    Google Scholar 

  25. Pentland, A.: Recognition by parts. In: Technical Report 406, SRI International. (1986)

    Google Scholar 

  26. Fayolle, P.A., Pasko, A.: An evolutionary approach to the extraction of object construction trees from 3D point clouds. Comput.-Aided Des. 74, 1–17 (2016)

    Article  Google Scholar 

  27. Yezzi, A., Soatto, S.: Stereoscopic segmentation. Int. J. Comput. Vis. 53, 31–43 (2003)

    Article  Google Scholar 

  28. Berger, M., et al.: A survey of surface reconstruction from point clouds. In: Computer Graphics Forum, pp. 301–329. Wiley Online Library (2017)

    Google Scholar 

  29. Xiao, J., Furukawa, Y.: Reconstructing the world’s museums. Int. J. Comput. Vis. 110, 243–258 (2014)

    Article  Google Scholar 

  30. Du, T., et al.: InverseCSG: automatic conversion of 3D models to CSG trees. In: SIGGRAPH Asia 2018 Technical Papers, p. 213. ACM (2018)

    Google Scholar 

  31. Slavcheva, M., Kehl, W., Navab, N., Ilic, S.: SDF-2-SDF registration for real-time 3D reconstruction from RGB-D data. Int. J. Comput. Vis. 126, 615–636 (2018)

    Article  MathSciNet  Google Scholar 

  32. Whitaker, R.T., Gregor, J.: A maximum-likelihood surface estimator for dense range data. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1372–1387 (2002)

    Article  Google Scholar 

  33. Gargallo, P., Prados, E., Sturm, P.: Minimizing the reprojection error in surface reconstruction from images. In: IEEE International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  34. Ganapathi, V., Plagemann, C., Koller, D., Thrun, S.: Real time motion capture using a single time-of-flight camera. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 755–762 (2010)

    Google Scholar 

  35. Qian, C., Sun, X., Wei, Y., Tang, X., Sun, J.: Realtime and robust hand tracking from depth. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1106–1113 (2014)

    Google Scholar 

  36. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: Learning implicit 3D representations without 3d supervision. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3504–3515 (2020)

    Google Scholar 

  37. Loper, M.M., Black, M.J.: OpenDR: an approximate differentiable renderer. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 154–169. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_11

    Chapter  Google Scholar 

  38. Terzopoulos, D., Witkin, A., Kass, M.: Constraints on deformable models: Recovering 3D shape and nonrigid motion. Artif. Intell. 36, 91–123 (1988)

    Article  Google Scholar 

  39. Prisacariu, V.A., Segal, A.V., Reid, I.: Simultaneous monocular 2D segmentation, 3D pose recovery and 3D reconstruction. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 593–606. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37331-2_45

    Chapter  Google Scholar 

  40. Tsai, A., et al.: A shape-based approach to the segmentation of medical imagery using level sets. IEEE Trans. Med. Imaging 22, 137–154 (2003)

    Article  Google Scholar 

  41. Liu, S., Zhang, Y., Peng, S., Shi, B., Pollefeys, M., Cui, Z.: Dist: rendering deep implicit signed distance function with differentiable sphere tracing. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2019–2028 (2020)

    Google Scholar 

  42. Tagliasacchi, A., Olson, M., Zhang, H., Hamarneh, G., Cohen-Or, D.: Vase: volume-aware surface evolution for surface reconstruction from incomplete point clouds. In: Computer Graphics Forum, vol. 30, pp. 1563–1571. Wiley Online Library (2011)

    Google Scholar 

  43. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4460–4470 (2019)

    Google Scholar 

  44. Witkin, A.P., Heckbert, P.S.: Using particles to sample and control implicit surfaces. In: SIGGRAPH, pp. 269–277. ACM (1994)

    Google Scholar 

  45. Siddiqi, K., Pizer, S.: Medial Representations: Mathematics, Algorithms and Applications, vol. 37. Springer, Heidelberg (2008). https://doi.org/10.1007/978-1-4020-8658-8

  46. Blum, H.: A transformation for extracting new descriptors of shape. In: Models for the Perception of Speech and Visual Form. MIT Press (1967)

    Google Scholar 

  47. Wolter, F.E.: Cut locus and medial axis in global shape interrogation and representation. In: MIT Design Laboratory Memorandum 92–2 and MIT Sea Grant Report.(1992)

    Google Scholar 

  48. Ma, J., Bae, S.W., Choi, S.: 3D medial axis point approximation using nearest neighbors and the normal field. Visual Comput. 28, 7–19 (2012)

    Article  Google Scholar 

  49. Tagliasacchi, A., Delame, T., Spagnuolo, M., Amenta, N., Telea, A.: 3D skeletons: a state-of-the-art report. In: Computer Graphics Forum, vol. 35, pp. 573–597. Wiley Online Library (2016)

    Google Scholar 

  50. Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: SIGGRAPH, pp. 311–318. ACM (1994)

    Google Scholar 

  51. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: SIGGRAPH, pp. 71–78. ACM (1992)

    Google Scholar 

  52. Hodan, T., Haluza, P., Obdržálek, Š., Matas, J., Lourakis, M., Zabulis, X.: T-LESS: an RGB-D dataset for 6D pose estimation of texture-less objects. In: IEEE Winter Conference on Applications of Computer Vision, pp. 880–888. IEEE (2017)

    Google Scholar 

Download references

Acknowledgments

This work is partly supported by the Research Council of Norway through the Centre of Excellence funding scheme, project number 223254, NTNU AMOS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simen Haugo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haugo, S., Stahl, A. (2020). Iterative Closest Point with Minimal Free Space Constraints. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2020. Lecture Notes in Computer Science(), vol 12510. Springer, Cham. https://doi.org/10.1007/978-3-030-64559-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64559-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64558-8

  • Online ISBN: 978-3-030-64559-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics