Abstract
The Iterative Closest Point (ICP) method is widely used for fitting geometric models to sensor data. By formulating the problem as a minimization of distances evaluated at observed surface points, the method is computationally efficient and applicable to a rich variety of model representations. However, when the scene surface is only partially visible, the model can be ill-constrained by surface observations alone. Existing methods that penalize free space violations may resolve this issue, but require that the explicit model surface is available or can be computed quickly, to remain efficient. We introduce an extension of ICP that integrates free space constraints, while the number of distance computations remains linear in the scene’s surface area. We support arbitrary shape spaces, requiring only that the distance to the model surface can be computed at a given point. We describe an implementation for range images and validate our method on implicit model fitting problems that benefit from the use of free space constraints.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)
Solina, F., Bajcsy, R.: Recovery of parametric models from range images: the case for superquadrics with global deformations. IEEE Trans. Pattern Anal. Mach. Intell. 12, 131–147 (1990)
Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. Int. J. Comput. Vis. 38, 199–218 (2000)
Ganapathi, V., Plagemann, C., Koller, D., Thrun, S.: Real-time human pose tracking from range data. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 738–751. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_53
Schmidt, T., Newcombe, R.A., Fox, D.: DART: dense articulated real-time tracking. In: Robotics: Science and Systems (2014)
Tagliasacchi, A., Schröder, M., Tkach, A., Bouaziz, S., Botsch, M., Pauly, M.: Robust articulated-ICP for real-time hand tracking. In: Computer Graphics Forum, Vol. 34, pp. 101–114. Wiley Online Library (2015)
Tkach, A., Pauly, M., Tagliasacchi, A.: Sphere-meshes for real-time hand modeling and tracking. ACM Trans. Graph. (ToG) 35, 1–11 (2016)
Tam, G.K., et al.: Registration of 3D point clouds and meshes: a survey from rigid to nonrigid. IEEE Trans. Visual. Comput. Graph. 19, 1199–1217 (2012)
Zhou, Q.-Y., Park, J., Koltun, V.: Fast global registration. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 766–782. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_47
Yang, J., Li, H., Campbell, D., Jia, Y.: Go-ICP: a globally optimal solution to 3D ICP point-set registration. IEEE Trans. Pattern Anal. Mach. Intell. 38, 2241–2254 (2016)
Yang, H., Carlone, L.: In perfect shape: certifiably optimal 3D shape reconstruction from 2d landmarks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 621–630 (2020)
Zhou, X., Zhu, M., Leonardos, S., Daniilidis, K.: Sparse representation for 3D shape estimation: a convex relaxation approach. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1648–1661 (2016)
Hart, J.C.: Sphere tracing: a geometric method for the antialiased ray tracing of implicit surfaces. Visual Comput. 12, 527–545 (1996)
Barr, A.H.: Global and local deformations of solid primitives. In: SIGGRAPH, pp. 21–30. ACM (1984)
Pasko, A., Adzhiev, V., Sourin, A., Savchenko, V.: Function representation in geometric modeling: concepts, implementation and applications. Visual Comput. 11, 429–446 (1995)
Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: SIGGRAPH, pp. 303–312. ACM (1996)
Newcombe, R.A., et al.: Kinectfusion: real-time dense surface mapping and tracking. In: ISMAR, pp. 127–136. IEEE (2011)
Jones, M.W., Baerentzen, J.A., Sramek, M.: 3D distance fields: a survey of techniques and applications. IEEE Trans. Visual. Comput. Graph. 12, 581–599 (2006)
Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: learning continuous signed distance functions for shape representation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)
Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vis. Comput. 10, 145–155 (1992)
Fitzgibbon, A.W.: Robust registration of 2D and 3D point sets. Image Vis. Comput. 21, 1145–1153 (2003)
Mitra, N.J., Gelfand, N., Pottmann, H., Guibas, L.: Registration of point cloud data from a geometric optimization perspective. In: Symposium on Geometry Processing, pp. 22–31. ACM (2004)
Pottmann, H., Huang, Q.X., Yang, Y.L., Hu, S.M.: Geometry and convergence analysis of algorithms for registration of 3D shapes. Int. J. Comput. Vis. 67, 277–296 (2006)
Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: International Conference on 3D Digital Imaging and Modeling, pp. 145–152 (2001)
Pentland, A.: Recognition by parts. In: Technical Report 406, SRI International. (1986)
Fayolle, P.A., Pasko, A.: An evolutionary approach to the extraction of object construction trees from 3D point clouds. Comput.-Aided Des. 74, 1–17 (2016)
Yezzi, A., Soatto, S.: Stereoscopic segmentation. Int. J. Comput. Vis. 53, 31–43 (2003)
Berger, M., et al.: A survey of surface reconstruction from point clouds. In: Computer Graphics Forum, pp. 301–329. Wiley Online Library (2017)
Xiao, J., Furukawa, Y.: Reconstructing the world’s museums. Int. J. Comput. Vis. 110, 243–258 (2014)
Du, T., et al.: InverseCSG: automatic conversion of 3D models to CSG trees. In: SIGGRAPH Asia 2018 Technical Papers, p. 213. ACM (2018)
Slavcheva, M., Kehl, W., Navab, N., Ilic, S.: SDF-2-SDF registration for real-time 3D reconstruction from RGB-D data. Int. J. Comput. Vis. 126, 615–636 (2018)
Whitaker, R.T., Gregor, J.: A maximum-likelihood surface estimator for dense range data. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1372–1387 (2002)
Gargallo, P., Prados, E., Sturm, P.: Minimizing the reprojection error in surface reconstruction from images. In: IEEE International Conference on Computer Vision, pp. 1–8 (2007)
Ganapathi, V., Plagemann, C., Koller, D., Thrun, S.: Real time motion capture using a single time-of-flight camera. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 755–762 (2010)
Qian, C., Sun, X., Wei, Y., Tang, X., Sun, J.: Realtime and robust hand tracking from depth. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1106–1113 (2014)
Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: Learning implicit 3D representations without 3d supervision. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3504–3515 (2020)
Loper, M.M., Black, M.J.: OpenDR: an approximate differentiable renderer. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 154–169. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_11
Terzopoulos, D., Witkin, A., Kass, M.: Constraints on deformable models: Recovering 3D shape and nonrigid motion. Artif. Intell. 36, 91–123 (1988)
Prisacariu, V.A., Segal, A.V., Reid, I.: Simultaneous monocular 2D segmentation, 3D pose recovery and 3D reconstruction. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 593–606. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37331-2_45
Tsai, A., et al.: A shape-based approach to the segmentation of medical imagery using level sets. IEEE Trans. Med. Imaging 22, 137–154 (2003)
Liu, S., Zhang, Y., Peng, S., Shi, B., Pollefeys, M., Cui, Z.: Dist: rendering deep implicit signed distance function with differentiable sphere tracing. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2019–2028 (2020)
Tagliasacchi, A., Olson, M., Zhang, H., Hamarneh, G., Cohen-Or, D.: Vase: volume-aware surface evolution for surface reconstruction from incomplete point clouds. In: Computer Graphics Forum, vol. 30, pp. 1563–1571. Wiley Online Library (2011)
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4460–4470 (2019)
Witkin, A.P., Heckbert, P.S.: Using particles to sample and control implicit surfaces. In: SIGGRAPH, pp. 269–277. ACM (1994)
Siddiqi, K., Pizer, S.: Medial Representations: Mathematics, Algorithms and Applications, vol. 37. Springer, Heidelberg (2008). https://doi.org/10.1007/978-1-4020-8658-8
Blum, H.: A transformation for extracting new descriptors of shape. In: Models for the Perception of Speech and Visual Form. MIT Press (1967)
Wolter, F.E.: Cut locus and medial axis in global shape interrogation and representation. In: MIT Design Laboratory Memorandum 92–2 and MIT Sea Grant Report.(1992)
Ma, J., Bae, S.W., Choi, S.: 3D medial axis point approximation using nearest neighbors and the normal field. Visual Comput. 28, 7–19 (2012)
Tagliasacchi, A., Delame, T., Spagnuolo, M., Amenta, N., Telea, A.: 3D skeletons: a state-of-the-art report. In: Computer Graphics Forum, vol. 35, pp. 573–597. Wiley Online Library (2016)
Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: SIGGRAPH, pp. 311–318. ACM (1994)
Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: SIGGRAPH, pp. 71–78. ACM (1992)
Hodan, T., Haluza, P., Obdržálek, Š., Matas, J., Lourakis, M., Zabulis, X.: T-LESS: an RGB-D dataset for 6D pose estimation of texture-less objects. In: IEEE Winter Conference on Applications of Computer Vision, pp. 880–888. IEEE (2017)
Acknowledgments
This work is partly supported by the Research Council of Norway through the Centre of Excellence funding scheme, project number 223254, NTNU AMOS.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Haugo, S., Stahl, A. (2020). Iterative Closest Point with Minimal Free Space Constraints. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2020. Lecture Notes in Computer Science(), vol 12510. Springer, Cham. https://doi.org/10.1007/978-3-030-64559-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-64559-5_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-64558-8
Online ISBN: 978-3-030-64559-5
eBook Packages: Computer ScienceComputer Science (R0)