Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Robust Approach to Plagiarism Detection in Handwritten Documents

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12510))

Included in the following conference series:

  • 1852 Accesses

Abstract

Plagiarism detection is a widely used technique to uniquely identify quality of work. We address in this paper, the problem of predicting similarities amongst a collection of documents. This technique has widespread uses in academic institutions. In this paper, we propose a simple yet effective method for detection of plagiarism by using a robust word detection and segmentation procedure followed by a convolution neural network (CNN)—Bi-directional Long Short Term Memory (biLSTM) pipeline to extract the text. Our approach also extract and encodes common patterns like scratches in handwriting for improving accuracy on real-world use cases. The extracted information from multiple documents using comparison metrics are used to find the documents which have been plagiarized from a source. Extensive experiments in our research show that this approach may help simplify the examining process and can act as a cheap viable alternative to many modern approaches used to detect plagiarism from handwritten documents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tripathi, R., Tiwari, P., Nithyanandam, K.: Avoiding plagiarism in research through free online plagiarism tools. In: 4th International Symposium on Emerging Trends and Technologies in Libraries and Information Services, pp. 275–280 (2015)

    Google Scholar 

  2. Rath, T.M., Manmatha, R.: Word spotting for historical documents. IJDAR (2007)

    Google Scholar 

  3. Rodriguez-Serrano, J.A., Perronnin, F.: A model-based sequence similarity with application to handwritten word spotting. PAMI (2012)

    Google Scholar 

  4. Rusinol, M., Aldavert, D., Toledo, R., Llados, J.: Efficient segmentation-free keyword spotting in historical document collections. PR (2015)

    Google Scholar 

  5. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  6. Potthast, M., et al.: Overview of the 6th International Competition on Plagiarism Detection. In: CLEF (2014)

    Google Scholar 

  7. Gandhi, A., Jawahar, C.V.: Detection of cut-and-paste in document images. In: ICDAR (2013)

    Google Scholar 

  8. Krishnan, P., Jawahar, C.V.: Matching handwritten document images. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision—ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol. 9905. Springer, Cham, Switzerland (2016)

    Google Scholar 

  9. Jiao, L., et al.: A survey of deep learning-based object detection. IEEE Access (2019)

    Google Scholar 

  10. Wise, M.J.: YAP3: improved detection of similarities in computer program and other texts. In: Proceedings of SIGCSE’96 Technical Symposium (1996)

    Google Scholar 

  11. Batomalaque, M.B., Camacho, C.M.R., Dalida, M.J.P., Delmo, J.A.B.: Image to text conversion technique for anti-plagiarism system. In: International Journal of Advanced Science and Convergence (2019)

    Google Scholar 

  12. Gitchell, D., Tran, N.: Sim: A utility for detecting similarity in computer programs. In: Proceedings of the 30th SIGCSE Technical Symposium on Computer Science Education (1999)

    Google Scholar 

  13. Zhao, Z.Q., Zheng, P., Zheng, P., Xu, S.T., Wu, X.: Object detection with deep learning: A review. IEEE Trans. Neural. Netw. Learn. Syst. 30(11), 3212–3232 (2019)

    Article  Google Scholar 

  14. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  15. Liu, W., et al.: Ssd: Single shot multibox detector. In: ECCV (2016)

    Google Scholar 

  16. Girshick, R.: Fast R-CNN. arXiv:1504.08083 (2015)

  17. Xu, L., Ren, J., Liu, C., Jia, J.: Deep Convolutional Neural Network for Image Deconvolution. In: NIPS (2014)

    Google Scholar 

  18. Ding, Z., Xia, R., Yu, J., Li, X., Yang, J.: Densely connected bidirectional lstm with applications to sentence classification. In: CCF International Conference on Natural Language Processing and Chinese Computing, Springer, Cham (2018)

    Google Scholar 

  19. Loper, E., Bird, S.: NLTK: The Natural Language ToolKit. In: ETMTNLP’02 (2002)

    Google Scholar 

  20. Github Homepage. https://pyenchant.github.io/pyenchant/index.html

  21. Github Homepage. https://github.com/barrust/pyspellchecker

  22. Marti, U., Bunke, H., Bunke, H.: The IAM-database: An english sentence database for off-line handwriting recognition. IJDAR 5 , 39–46 (2002)

    Article  Google Scholar 

  23. Poznanski, A., Wolf, L.: Cnn-n-gram for handwriting word recognition in CVPR (2016)

    Google Scholar 

  24. Castro, D., Bezerra, B.L.D., Valena, M.: Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. In: ICFHR (2018)

    Google Scholar 

  25. Bluche, T., Messina, R.: Gated convolutional recurrent neural networks for multilingual handwriting recognition. ICDAR (2017)

    Google Scholar 

  26. Voigtlaender, P., Doetsch, P., Ney, H.: Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. ICFHR (2016)

    Google Scholar 

  27. Ingle, R., Fujii, Y., Deselaers, T., Baccash, J., Popat, A.C.: A Scalable Handwritten Text Recognition System Google Research (2019)

    Google Scholar 

  28. Balci, B., Saadati, D., Shiferaw, D.: Handwritten Text Recognition using Deep Learning Stanford Edu. (2017)

    Google Scholar 

  29. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed Representations of Words and Phrases and their Compositionality. NIPS (2013)

    Google Scholar 

  30. Kingma, D.P., Ba, J.L.: Adam: A method for stochastic optimization (2014)

    Google Scholar 

  31. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Lahitani, A.R., Permanasari, A.E., Setiawan, N.A.: Cosine similarity to determine similarity measure. In: ICIT (2016)

    Google Scholar 

  33. Ed.gov Homepage. https://files.eric.ed.gov/fulltext/EJ1112609.pdf

  34. p.org Homepage. https://www.plagiarism.org/blog/2017/11/16/what-does-confidence-have-to-do-with-plagiarism

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pandey, O., Gupta, I., Mishra, B.S.P. (2020). A Robust Approach to Plagiarism Detection in Handwritten Documents. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2020. Lecture Notes in Computer Science(), vol 12510. Springer, Cham. https://doi.org/10.1007/978-3-030-64559-5_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64559-5_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64558-8

  • Online ISBN: 978-3-030-64559-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics