Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Multimodal High Level Video Segmentation for Content Targeted Online Advertising

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12510))

Included in the following conference series:

Abstract

In this paper we introduce a novel advertisement system, dedicated to multimedia documents broadcasted over the Internet. The proposed approach takes into account the consumer’s perspective and inserts contextual relevant ads at the level of the scenes boundaries, while reducing the degree of intrusiveness. From the methodological point of view, the major contribution of the paper concerns a temporal video segmentation method into scenes based on a multimodal (visual, audio and semantic) fusion of information. The experimental evaluation, carried out on a large dataset with more than 30 video documents validates the proposed methodology with average F1 scores superior to 85%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Live Video Streaming - www.iab.com/wp-content/uploads/2018/06/IAB-Live-Video-Streaming-Trends.pdf. Accessed 25 June 2020

  2. AdSense - www.google.com/adsense. Accessed 25 June 2020

  3. Geddes, B.: Advanced Google AdWords. John Wiley & Sons, Indianapolis (2014)

    Google Scholar 

  4. Sengamedu, S.H., Sawant, N., Wadhwa, S.: vADeo: video advertising system. In: ICM, pp. 455–456 (2007)

    Google Scholar 

  5. Mei, T., Hua, X.S., Li, S.: VideoSense: a contextual in-video advertising system. IEEE Trans. Circ. Syst. Video Technol. 19(12) 1866–1879 (2009)

    Google Scholar 

  6. Mei, T., et al.: AdOn: toward contextual overlay in-video advertising. Multimed. Syst. 16(4), 335–344 (2010)

    Article  Google Scholar 

  7. Hu, J., Li, G., Xiao, J., Hong, R.: Videoader: a video advertising system based on intelligent analysis of visual content. In: ICIMCS, pp. 30–33 (2011)

    Google Scholar 

  8. Sotak, G.E., et al.: The Laplacian-of-Gaussian kernel: a formal analysis and design procedure. CVGIP 48, 147–189 (1989)

    Google Scholar 

  9. Lowe, D.: Distinctive image features from scale-invariant keypoints. In: IJCV, 60(2) (2004)

    Google Scholar 

  10. Wang, J., Wang, B., Duan, L., Tian, Q., Lu, H.: Interactive ads recommendation with contextual search on product topic space. Multimed. Tools Appl. 70(2), 799–820 (2011). https://doi.org/10.1007/s11042-011-0866-2

    Article  Google Scholar 

  11. Wang, J., et al.: ActiveAd: a novel framework of linking ad videos to online products. Neurocomput. 185, 82–92 (2016)

    Article  Google Scholar 

  12. Zhang, H., Cao, X., Ho, J.K.L., Chow, T.W.S.: Object-level video advertising: an optimization framework. IEEE TII 13(2), 520–531 (2017)

    Google Scholar 

  13. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE CVPR, San Diego, CA, USA, vol. 1, pp. 886–893 (2005)

    Google Scholar 

  14. Wang, G., Zhuo, L., Li, J., Ren, D., Zhang, J.: An efficient method of content-targeted online video advertising. JVCIR 50, 40–48 (2018)

    Google Scholar 

  15. Tapu, R., Zaharia, T., Prêteux, F.: A scale-space filtering-based shot detection algorithm. In: 26th Convention of Electrical and Electronics Engineers in Israel, pp. 919–923 (2010)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, Las Vegas, NV, pp. 770-778 (2016)

    Google Scholar 

  17. Wang, J., et al.: Learning fine-grained image similarity with deep ranking. In: CVPR, pp. 1386–1393 (2014)

    Google Scholar 

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real- time object detection with region proposal networks. In: NIPS (2015)

    Google Scholar 

  19. Jiang, H., Learned-Miller, E.G.: Face detection with the faster R-CNN. In: 12th IEEE International Conference on Automatic Face & Gesture Recognition, pp. 650–657 (2017)

    Google Scholar 

  20. Mocanu, B., Tapu, R., Zaharia, T.: Single object tracking using offline trained deep regression networks. In: IPTA, pp. 1–6 (2017)

    Google Scholar 

  21. Doukhan, D., et al.: An open-source speaker gender detection framework for monitoring gender equality. In: ICASSP, pp. 5214–5218 (2018)

    Google Scholar 

  22. Redmon, J., Farhadi, A.: YOLOv3, An incremental improvement (2018). arXiv:1804.02767

  23. Lin, Y., et al.: Microsoft COCO: common objects in context. In: ECCV (2014)

    Google Scholar 

Download references

Acknowledgement

This work has been carried out within the framework of the joint lab AITV (Artificial Intelligence for Television) established between Télécom SudParis and France Télévisions.

Part of this work was supported by a grant of the Romanian Ministery of Research and Innovation, CNCS – UEFISCDI, project number: PN-III-P1-1.1-TE-2019-0420, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruxandra Tapu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mocanu, B., Tapu, R., Zaharia, T. (2020). A Multimodal High Level Video Segmentation for Content Targeted Online Advertising. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2020. Lecture Notes in Computer Science(), vol 12510. Springer, Cham. https://doi.org/10.1007/978-3-030-64559-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64559-5_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64558-8

  • Online ISBN: 978-3-030-64559-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics