Nothing Special   »   [go: up one dir, main page]

Skip to main content

SalsaNext: Fast, Uncertainty-Aware Semantic Segmentation of LiDAR Point Clouds

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12510))

Included in the following conference series:

Abstract

In this paper, we introduce SalsaNext for the uncertainty-aware semantic segmentation of a full 3D LiDAR point cloud in real-time. SalsaNext is the next version of SalsaNet [1] which has an encoder-decoder architecture where the encoder unit has a set of ResNet blocks and the decoder part combines upsampled features from the residual blocks. In contrast to SalsaNet, we introduce a new context module, replace the ResNet encoder blocks with a new residual dilated convolution stack with gradually increasing receptive fields and add the pixel-shuffle layer in the decoder. Additionally, we switch from stride convolution to average pooling and also apply central dropout treatment. To directly optimize the Jaccard index, we further combine the weighted cross entropy loss with Lovász-Softmax loss [4]. We finally inject a Bayesian treatment to compute the epistemic and aleatoric uncertainties for each point in the cloud. We provide a thorough quantitative evaluation on the Semantic-KITTI dataset [3], which demonstrates that the proposed SalsaNext outperforms other published semantic segmentation networks and achieves \(3.6\%\) more accuracy over the previous state-of-the-art method. We also release our source code (https://github.com/TiagoCortinhal/SalsaNext).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/TiagoCortinhal/SalsaNext.

  2. 2.

    https://www.youtube.com/watch?v=MlSaIcD9ItU.

References

  1. Aksoy, E.E., Baci, S., Cavdar, S.: Salsanet: Fast road and vehicle segmentation in lidar point clouds for autonomous driving. In IEEE IV, (2020)

    Google Scholar 

  2. Alonso, I., Riazuelo, L., Montesano, L., Murillo, A.C.: 3d-mininet: Learning a 2d representation from point clouds for fast and efficient 3d lidar semantic segmentation. RA-L, (2020)

    Google Scholar 

  3. Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., Gall, J.: SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences. In ICCV, (2019)

    Google Scholar 

  4. Berman, M., Triki, A.R., Blaschko, M.: The lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In CVPR, (2018)

    Google Scholar 

  5. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. In arXiv, (2017)

    Google Scholar 

  6. Feng, D., Rosenbaum, L., Dietmayer, K.: Towards safe autonomous driving: Capture uncertainty in the deep neural network for lidar 3d vehicle detection. In ITSC, (2018)

    Google Scholar 

  7. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In ICML, (2016)

    Google Scholar 

  8. Gast, J., Roth, S.: Lightweight probabilistic deep networks. In CVPR, (2018)

    Google Scholar 

  9. Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., Bennamoun, M.: Deep learning for 3d point clouds: A survey. IEEE TPAMI, (2019)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In CVPR, pages 770–778, (2016)

    Google Scholar 

  11. Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, N., Markham, A.: Randla-net: Efficient semantic segmentation of large-scale point clouds. In CVPR, (2020)

    Google Scholar 

  12. Ilg, E., Cicek, O., Galesso, S., Klein, A., Makansi, O., Hutter, F., Brox, T., Uncertainty estimates and multi-hypotheses networks for optical flow. In ECCV, pages 652–667, (2018)

    Google Scholar 

  13. Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. In BMVC, (2017)

    Google Scholar 

  14. Landrieu L., Simonovsky, M.: Large-scale point cloud semantic segmentation with superpoint graphs. In CVPR, (2018)

    Google Scholar 

  15. Lawin, F.J., Danelljan, M., Tosteberg, P., Bhat, G., Khan, F.S., Felsberg, M.: Deep projective 3d semantic segmentation. In CAIP, (2017)

    Google Scholar 

  16. Li, X., Chen, S., Hu, X., Yang, J.: Understanding the disharmony between dropout and batch normalization by variance shift. In CVPR, (2019)

    Google Scholar 

  17. Loquercio, A., Segu, M., Scaramuzza, D.: A general framework for uncertainty estimation in deep learning. IEEE RA-L 5(2), 3153–3160 (2020)

    Google Scholar 

  18. Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: RangeNet++: Fast and Accurate LiDAR Semantic Segmentation. In IROS, (2019)

    Google Scholar 

  19. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification and segmentation. In CVPR, (2017)

    Google Scholar 

  20. Qi, C.R., Yi, L., Su, H., Guibas, L.j.: Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In NIPS, (2017)

    Google Scholar 

  21. Rosu, A.R., Schütt, P., Quenzel, J., Behnke, S.: LatticeNet: Fast Point Cloud Segmentation Using Permutohedral Lattices. In RSS, (2020)

    Google Scholar 

  22. Shi, W., Caballero, J., Huszar, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D., Wang, Z.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In CVPR, pages 1874–1883, (2016)

    Google Scholar 

  23. Su, H., Jampani, V., Sun, D., Maji, S., Kalogerakis, E., Yang, M.H., Kautz, J.: Splatnet: Sparse lattice networks for point cloud processing. In CVPR, (2018)

    Google Scholar 

  24. Tatarchenko, M., Park, J., Koltun, V., Zhou, Q.Y.: Tangent convolutions for dense prediction in 3d. In CVPR, (2018)

    Google Scholar 

  25. Wu, B., Wan, A., Yue, X., Keutzer, K.: Squeezeseg: Convolutional neural nets with recurrent crf for real-time road-object segmentation from 3d lidar point cloud. In ICRA, (2018)

    Google Scholar 

  26. Wu, B., Zhou, X., Zhao, S., Yue, X., Keutzer, K.: Squeezesegv 2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud. In ICRA, (2019)

    Google Scholar 

  27. Xu, C., Wu, B., Wang, Z., Zhan, W., Vajda, P., Keutzer, K. and Tomizuka, M.: Squeezesegv3: Spatially-adaptive convolution for efficient point-cloud segmentation. In arXiv, (2020)

    Google Scholar 

  28. Zeng, Y., Hu, Y., Liu, S., Ye, J., Han, Y., Li, X., Sun, N.: Rt3d: Real-time 3-d vehicle detection in lidar point cloud for autonomous driving. IEEE RAL 3(4), 3434–3440 (2018)

    Google Scholar 

  29. Zhang, B., Wonka, P.: Point cloud instance segmentation using probabilistic embeddings. In CoRR, (2019)

    Google Scholar 

  30. Zhou, Y., Tuzel, O.: Voxelnet: End-to-end learning for point cloud based 3d object detection. In CVPR, (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Cortinhal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cortinhal, T., Tzelepis, G., Erdal Aksoy, E. (2020). SalsaNext: Fast, Uncertainty-Aware Semantic Segmentation of LiDAR Point Clouds. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2020. Lecture Notes in Computer Science(), vol 12510. Springer, Cham. https://doi.org/10.1007/978-3-030-64559-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64559-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64558-8

  • Online ISBN: 978-3-030-64559-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics