Nothing Special   »   [go: up one dir, main page]

Skip to main content

Extended Abstract - Transformers: Intrusion Detection Data in Disguise

  • Conference paper
  • First Online:
Computer Security (CyberICPS 2020, SECPRE 2020, ADIoT 2020)

Abstract

IoT cyber security deficiencies are an increasing concern for users, operators, and developers. With no immediate and holistic device-level fixes in sight, alternative wraparound defensive measures are required. Intrusion Detection Systems (IDS) present one such option, and represent an active field of research within the IoT space. IoT environments offer rich contextual and situational information from their interaction with the physical processes they control, which may be of use to such IDS. This paper uses a comprehensive analysis of the current state-of-the-art in context and situationally aware IoT IDS to define the often misunderstood concepts of context and situational awareness in relation to their use within IoT IDS. Building on this, a unified approach to transforming and exploiting such a rich additional data set is proposed to enhance the efficacy of current IDS approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a better understanding of context and context-awareness. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48157-5_29

    Chapter  Google Scholar 

  2. Alcaraz, C., Lopez, J.: Wide-area situational awareness for critical infrastructure protection. Computer 46(4), 30–37 (2013). https://doi.org/10.1109/MC.2013.72

    Article  Google Scholar 

  3. Anton, S.D., Fraunholz, D., Schotten, H.D., Teuber, S.: A question of context: enhancing intrusion detection by providing context information. In: Joint 13th CTTE and 10th CMI Conference on Internet of Things - Business Models, Users, and Networks, 1–8 January 2018 (2017). https://doi.org/10.1109/CTTE.2017.8260938

  4. Bass, T.: Intrusion detection systems and multisensor data fusion. Commun. ACM 43(4), 99–105 (2000). https://doi.org/10.1145/332051.332079

    Article  Google Scholar 

  5. Benkhelifa, E., Welsh, T., Hamouda, W.: A critical review of practices and challenges in intrusion detection systems for IoT: toward universal and resilient systems. IEEE Commun. Surv. Tutor. 20(4), 3496–3509 (2018). https://doi.org/10.1109/COMST.2018.2844742

    Article  Google Scholar 

  6. Bricon-Souf, N., Newman, C.R.: Context awareness in health care: a review (2007). https://doi.org/10.1016/j.ijmedinf.2006.01.003

  7. Casillo, M., Coppola, S., De Santo, M., Pascale, F., Santonicola, E.: Embedded intrusion detection system for detecting attacks over CAN-BUS. In: 2019 4th International Conference on System Reliability and Safety, ICSRS 2019, pp. 136–141 (2019). https://doi.org/10.1109/ICSRS48664.2019.8987605

  8. Choi, J., et al.: Detecting and identifying faulty IoT devices in smart home with context extraction. In: Proceedings - 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2018, pp. 610–621 (2018). https://doi.org/10.1109/DSN.2018.00068

  9. Endsley, M.R.: Toward a theory of situation awareness in dynamic systems (1995). https://doi.org/10.1518/001872095779049543

  10. Gendreau, A.A.: Situation awareness measurement enhanced for efficient monitoring in the internet of things. In: Proceedings - 2015 IEEE Region 10 Symposium, TENSYMP 2015, pp. 82–85 (2015). https://doi.org/10.1109/TENSYMP.2015.13

  11. Göker, A., Myrhaug, H., Bierig, R.: Context and Information Retrieval (chap. 7), pp. 131–157. Wiley, Hoboken (2009). https://doi.org/10.1002/9780470033647.ch7

  12. Gopal, R., Parthasarathy, V.: CAND-IDS: a novel context aware intrusion detection system in cooperative wireless sensor networks by nodal node deployment. Circ. Syst. 07(11), 3504–3521 (2016). https://doi.org/10.4236/cs.2016.711298

    Article  Google Scholar 

  13. Kayes, A.S.M., Han, J., Colman, A.: PO-SAAC: a purpose-oriented situation-aware access control framework for software services. In: Jarke, M., et al. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 58–74. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6_5

    Chapter  Google Scholar 

  14. Kirupakar, J., Shalinie, S.M.: Situation aware intrusion detection system design for industrial IoT gateways. In: ICCIDS 2019–2nd International Conference on Computational Intelligence in Data Science, Proceedings (2019). https://doi.org/10.1109/ICCIDS.2019.8862038

  15. Kouicem, D.E., Bouabdallah, A., Lakhlef, H.: Internet of things security: a top-down survey. Comput. Netw. 141, 199–221 (2018). https://doi.org/10.1016/j.comnet.2018.03.012

    Article  Google Scholar 

  16. Liu, Y., Seet, B.C., Al-Anbuky, A.: An ontology-based context model for wireless sensor network (WSN) management in the internet of things. J. Sens. Actuator Netw. 2(4), 653–674 (2013). https://doi.org/10.3390/jsan2040653

    Article  Google Scholar 

  17. Liu, Y., Mu, D.: A network security situation awareness model based on risk assessment. In: Krömer, P., Zhang, H., Liang, Y., Pan, J.-S. (eds.) ECC 2018. AISC, vol. 891, pp. 17–24. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03766-6_3

    Chapter  Google Scholar 

  18. McDermott, C.D., Jeannelle, B., Isaacs, J.P.: Towards a conversational agent for threat detection in the internet of things. In: 2019 International Conference on Cyber Situational Awareness, Data Analytics and Assessment, Cyber SA 2019 (2019). https://doi.org/10.1109/CyberSA.2019.8899580

  19. Meissen, U., Pfennigschmidt, S., Voisard, A., Wahnfried, T.: Context- and situation-awareness in information logistics. In: Lindner, W., Mesiti, M., Türker, C., Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 335–344. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30192-9_33

    Chapter  Google Scholar 

  20. National Institute of Standards and Technology: NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 3.0. Technical report (2014). https://doi.org/10.6028/NIST.SP.1108r3

  21. Pan, Z., Hariri, S., Pacheco, J.: Context aware intrusion detection for building automation systems. Comput. Secur. 85, 181–201 (2019). https://doi.org/10.1016/j.cose.2019.04.011

    Article  Google Scholar 

  22. Park, S.-T., Li, G., Hong, J.-C.: A study on smart factory-based ambient intelligence context-aware intrusion detection system using machine learning. J. Ambient Intell. Humaniz. Comput. 11(4), 1405–1412 (2018). https://doi.org/10.1007/s12652-018-0998-6

    Article  Google Scholar 

  23. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware computing for the internet of things: a survey. IEEE Commun. Surv. Tutor. 16(1), 414–454 (2014). https://doi.org/10.1109/SURV.2013.042313.00197

    Article  Google Scholar 

  24. Sanchez, L., Lanza, J., Olsen, R., Bauer, M., Girod-Genet, M.: A generic context management framework for personal networking environments. In: 2006 3rd Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, MobiQuitous (2006). https://doi.org/10.1109/MOBIQ.2006.340411

  25. Santos, L., Rabadao, C., Goncalves, R.: Intrusion detection systems in internet of things: a literature review. In: Iberian Conference on Information Systems and Technologies, CISTI 2018, 1–7 June 2018 (2018). https://doi.org/10.23919/CISTI.2018.8399291

  26. Sezer, O.B., Dogdu, E., Ozbayoglu, A.M.: Context-aware computing, learning, and big data in internet of things: a survey. IEEE Internet Things J. 5(1), 1–27 (2018). https://doi.org/10.1109/JIOT.2017.2773600

    Article  Google Scholar 

  27. Sharma, V., You, I., Yim, K., Chen, I.R., Cho, J.H.: Briot: behavior rule specification-based misbehavior detection for IoT-embedded cyber-physical systems. IEEE Access 7, 1–25 (2019). https://doi.org/10.1109/ACCESS.2019.2917135

    Article  Google Scholar 

  28. Sikder, A.K., Aksu, H., Uluagac, A.S.: A context-aware framework for detecting sensor-based threats on smart devices. IEEE Trans. Mob. Comput. 19(2), 245–261 (2020). https://doi.org/10.1109/TMC.2019.2893253

    Article  Google Scholar 

  29. Xu, G., Cao, Y., Ren, Y., Li, X., Feng, Z.: Network security situation awareness based on semantic ontology and user-defined rules for internet of things. IEEE Access 5, 21046–21056 (2017). https://doi.org/10.1109/ACCESS.2017.2734681

    Article  Google Scholar 

  30. Ye, J., Dobson, S., McKeever, S.: Situation identification techniques in pervasive computing: a review. Pervasive Mob. Comput. 8(1), 36–66 (2012). https://doi.org/10.1016/j.pmcj.2011.01.004

    Article  Google Scholar 

  31. Zarpelão, B.B., Miani, R.S., Kawakani, C.T., de Alvarenga, S.C.: A survey of intrusion detection in Internet of Things. J. Netw. Comput. Appl. 84(September 2016), 25–37 (2017). https://doi.org/10.1016/j.jnca.2017.02.009

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Benjamin Green or Daniel Prince .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boorman, J., Green, B., Prince, D. (2020). Extended Abstract - Transformers: Intrusion Detection Data in Disguise. In: Katsikas, S., et al. Computer Security. CyberICPS SECPRE ADIoT 2020 2020 2020. Lecture Notes in Computer Science(), vol 12501. Springer, Cham. https://doi.org/10.1007/978-3-030-64330-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64330-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64329-4

  • Online ISBN: 978-3-030-64330-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics