Abstract
IoT cyber security deficiencies are an increasing concern for users, operators, and developers. With no immediate and holistic device-level fixes in sight, alternative wraparound defensive measures are required. Intrusion Detection Systems (IDS) present one such option, and represent an active field of research within the IoT space. IoT environments offer rich contextual and situational information from their interaction with the physical processes they control, which may be of use to such IDS. This paper uses a comprehensive analysis of the current state-of-the-art in context and situationally aware IoT IDS to define the often misunderstood concepts of context and situational awareness in relation to their use within IoT IDS. Building on this, a unified approach to transforming and exploiting such a rich additional data set is proposed to enhance the efficacy of current IDS approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a better understanding of context and context-awareness. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48157-5_29
Alcaraz, C., Lopez, J.: Wide-area situational awareness for critical infrastructure protection. Computer 46(4), 30–37 (2013). https://doi.org/10.1109/MC.2013.72
Anton, S.D., Fraunholz, D., Schotten, H.D., Teuber, S.: A question of context: enhancing intrusion detection by providing context information. In: Joint 13th CTTE and 10th CMI Conference on Internet of Things - Business Models, Users, and Networks, 1–8 January 2018 (2017). https://doi.org/10.1109/CTTE.2017.8260938
Bass, T.: Intrusion detection systems and multisensor data fusion. Commun. ACM 43(4), 99–105 (2000). https://doi.org/10.1145/332051.332079
Benkhelifa, E., Welsh, T., Hamouda, W.: A critical review of practices and challenges in intrusion detection systems for IoT: toward universal and resilient systems. IEEE Commun. Surv. Tutor. 20(4), 3496–3509 (2018). https://doi.org/10.1109/COMST.2018.2844742
Bricon-Souf, N., Newman, C.R.: Context awareness in health care: a review (2007). https://doi.org/10.1016/j.ijmedinf.2006.01.003
Casillo, M., Coppola, S., De Santo, M., Pascale, F., Santonicola, E.: Embedded intrusion detection system for detecting attacks over CAN-BUS. In: 2019 4th International Conference on System Reliability and Safety, ICSRS 2019, pp. 136–141 (2019). https://doi.org/10.1109/ICSRS48664.2019.8987605
Choi, J., et al.: Detecting and identifying faulty IoT devices in smart home with context extraction. In: Proceedings - 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2018, pp. 610–621 (2018). https://doi.org/10.1109/DSN.2018.00068
Endsley, M.R.: Toward a theory of situation awareness in dynamic systems (1995). https://doi.org/10.1518/001872095779049543
Gendreau, A.A.: Situation awareness measurement enhanced for efficient monitoring in the internet of things. In: Proceedings - 2015 IEEE Region 10 Symposium, TENSYMP 2015, pp. 82–85 (2015). https://doi.org/10.1109/TENSYMP.2015.13
Göker, A., Myrhaug, H., Bierig, R.: Context and Information Retrieval (chap. 7), pp. 131–157. Wiley, Hoboken (2009). https://doi.org/10.1002/9780470033647.ch7
Gopal, R., Parthasarathy, V.: CAND-IDS: a novel context aware intrusion detection system in cooperative wireless sensor networks by nodal node deployment. Circ. Syst. 07(11), 3504–3521 (2016). https://doi.org/10.4236/cs.2016.711298
Kayes, A.S.M., Han, J., Colman, A.: PO-SAAC: a purpose-oriented situation-aware access control framework for software services. In: Jarke, M., et al. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 58–74. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6_5
Kirupakar, J., Shalinie, S.M.: Situation aware intrusion detection system design for industrial IoT gateways. In: ICCIDS 2019–2nd International Conference on Computational Intelligence in Data Science, Proceedings (2019). https://doi.org/10.1109/ICCIDS.2019.8862038
Kouicem, D.E., Bouabdallah, A., Lakhlef, H.: Internet of things security: a top-down survey. Comput. Netw. 141, 199–221 (2018). https://doi.org/10.1016/j.comnet.2018.03.012
Liu, Y., Seet, B.C., Al-Anbuky, A.: An ontology-based context model for wireless sensor network (WSN) management in the internet of things. J. Sens. Actuator Netw. 2(4), 653–674 (2013). https://doi.org/10.3390/jsan2040653
Liu, Y., Mu, D.: A network security situation awareness model based on risk assessment. In: Krömer, P., Zhang, H., Liang, Y., Pan, J.-S. (eds.) ECC 2018. AISC, vol. 891, pp. 17–24. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03766-6_3
McDermott, C.D., Jeannelle, B., Isaacs, J.P.: Towards a conversational agent for threat detection in the internet of things. In: 2019 International Conference on Cyber Situational Awareness, Data Analytics and Assessment, Cyber SA 2019 (2019). https://doi.org/10.1109/CyberSA.2019.8899580
Meissen, U., Pfennigschmidt, S., Voisard, A., Wahnfried, T.: Context- and situation-awareness in information logistics. In: Lindner, W., Mesiti, M., Türker, C., Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 335–344. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30192-9_33
National Institute of Standards and Technology: NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 3.0. Technical report (2014). https://doi.org/10.6028/NIST.SP.1108r3
Pan, Z., Hariri, S., Pacheco, J.: Context aware intrusion detection for building automation systems. Comput. Secur. 85, 181–201 (2019). https://doi.org/10.1016/j.cose.2019.04.011
Park, S.-T., Li, G., Hong, J.-C.: A study on smart factory-based ambient intelligence context-aware intrusion detection system using machine learning. J. Ambient Intell. Humaniz. Comput. 11(4), 1405–1412 (2018). https://doi.org/10.1007/s12652-018-0998-6
Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware computing for the internet of things: a survey. IEEE Commun. Surv. Tutor. 16(1), 414–454 (2014). https://doi.org/10.1109/SURV.2013.042313.00197
Sanchez, L., Lanza, J., Olsen, R., Bauer, M., Girod-Genet, M.: A generic context management framework for personal networking environments. In: 2006 3rd Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, MobiQuitous (2006). https://doi.org/10.1109/MOBIQ.2006.340411
Santos, L., Rabadao, C., Goncalves, R.: Intrusion detection systems in internet of things: a literature review. In: Iberian Conference on Information Systems and Technologies, CISTI 2018, 1–7 June 2018 (2018). https://doi.org/10.23919/CISTI.2018.8399291
Sezer, O.B., Dogdu, E., Ozbayoglu, A.M.: Context-aware computing, learning, and big data in internet of things: a survey. IEEE Internet Things J. 5(1), 1–27 (2018). https://doi.org/10.1109/JIOT.2017.2773600
Sharma, V., You, I., Yim, K., Chen, I.R., Cho, J.H.: Briot: behavior rule specification-based misbehavior detection for IoT-embedded cyber-physical systems. IEEE Access 7, 1–25 (2019). https://doi.org/10.1109/ACCESS.2019.2917135
Sikder, A.K., Aksu, H., Uluagac, A.S.: A context-aware framework for detecting sensor-based threats on smart devices. IEEE Trans. Mob. Comput. 19(2), 245–261 (2020). https://doi.org/10.1109/TMC.2019.2893253
Xu, G., Cao, Y., Ren, Y., Li, X., Feng, Z.: Network security situation awareness based on semantic ontology and user-defined rules for internet of things. IEEE Access 5, 21046–21056 (2017). https://doi.org/10.1109/ACCESS.2017.2734681
Ye, J., Dobson, S., McKeever, S.: Situation identification techniques in pervasive computing: a review. Pervasive Mob. Comput. 8(1), 36–66 (2012). https://doi.org/10.1016/j.pmcj.2011.01.004
Zarpelão, B.B., Miani, R.S., Kawakani, C.T., de Alvarenga, S.C.: A survey of intrusion detection in Internet of Things. J. Netw. Comput. Appl. 84(September 2016), 25–37 (2017). https://doi.org/10.1016/j.jnca.2017.02.009
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Boorman, J., Green, B., Prince, D. (2020). Extended Abstract - Transformers: Intrusion Detection Data in Disguise. In: Katsikas, S., et al. Computer Security. CyberICPS SECPRE ADIoT 2020 2020 2020. Lecture Notes in Computer Science(), vol 12501. Springer, Cham. https://doi.org/10.1007/978-3-030-64330-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-64330-0_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-64329-4
Online ISBN: 978-3-030-64330-0
eBook Packages: Computer ScienceComputer Science (R0)